![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inxpss | Structured version Visualization version GIF version |
Description: Two ways to say that an intersection with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 16-Jul-2019.) |
Ref | Expression |
---|---|
inxpss | ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brinxp2 5744 | . . . . 5 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)) | |
2 | 1 | imbi1i 349 | . . . 4 ⊢ ((𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦) → 𝑥𝑆𝑦)) |
3 | impexp 450 | . . . 4 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦) → 𝑥𝑆𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) | |
4 | 2, 3 | bitri 275 | . . 3 ⊢ ((𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) |
5 | 4 | 2albii 1814 | . 2 ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) |
6 | relinxp 5805 | . . 3 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) | |
7 | ssrel3 5777 | . . 3 ⊢ (Rel (𝑅 ∩ (𝐴 × 𝐵)) → ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦))) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦)) |
9 | r2al 3186 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) | |
10 | 5, 8, 9 | 3bitr4i 303 | 1 ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 ∈ wcel 2098 ∀wral 3053 ∩ cin 3940 ⊆ wss 3941 class class class wbr 5139 × cxp 5665 Rel wrel 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-xp 5673 df-rel 5674 |
This theorem is referenced by: idinxpss 37675 |
Copyright terms: Public domain | W3C validator |