| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inxpss | Structured version Visualization version GIF version | ||
| Description: Two ways to say that an intersection with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 16-Jul-2019.) |
| Ref | Expression |
|---|---|
| inxpss | ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp2 5719 | . . . . 5 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)) | |
| 2 | 1 | imbi1i 349 | . . . 4 ⊢ ((𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦) → 𝑥𝑆𝑦)) |
| 3 | impexp 450 | . . . 4 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦) → 𝑥𝑆𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ ((𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) |
| 5 | 4 | 2albii 1820 | . 2 ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) |
| 6 | relinxp 5780 | . . 3 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) | |
| 7 | ssrel3 5752 | . . 3 ⊢ (Rel (𝑅 ∩ (𝐴 × 𝐵)) → ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦))) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦)) |
| 9 | r2al 3174 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) | |
| 10 | 5, 8, 9 | 3bitr4i 303 | 1 ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∀wral 3045 ∩ cin 3916 ⊆ wss 3917 class class class wbr 5110 × cxp 5639 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: idinxpss 38307 |
| Copyright terms: Public domain | W3C validator |