Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxpss Structured version   Visualization version   GIF version

Theorem inxpss 38306
Description: Two ways to say that an intersection with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 16-Jul-2019.)
Assertion
Ref Expression
inxpss ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥𝑆𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦

Proof of Theorem inxpss
StepHypRef Expression
1 brinxp2 5719 . . . . 5 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦))
21imbi1i 349 . . . 4 ((𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑥𝑆𝑦) ↔ (((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦) → 𝑥𝑆𝑦))
3 impexp 450 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ 𝑥𝑅𝑦) → 𝑥𝑆𝑦) ↔ ((𝑥𝐴𝑦𝐵) → (𝑥𝑅𝑦𝑥𝑆𝑦)))
42, 3bitri 275 . . 3 ((𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑥𝑆𝑦) ↔ ((𝑥𝐴𝑦𝐵) → (𝑥𝑅𝑦𝑥𝑆𝑦)))
542albii 1820 . 2 (∀𝑥𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑥𝑆𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → (𝑥𝑅𝑦𝑥𝑆𝑦)))
6 relinxp 5780 . . 3 Rel (𝑅 ∩ (𝐴 × 𝐵))
7 ssrel3 5752 . . 3 (Rel (𝑅 ∩ (𝐴 × 𝐵)) → ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑥𝑆𝑦)))
86, 7ax-mp 5 . 2 ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑥𝑆𝑦))
9 r2al 3174 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥𝑆𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → (𝑥𝑅𝑦𝑥𝑆𝑦)))
105, 8, 93bitr4i 303 1 ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑥𝑆𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  wral 3045  cin 3916  wss 3917   class class class wbr 5110   × cxp 5639  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648
This theorem is referenced by:  idinxpss  38307
  Copyright terms: Public domain W3C validator