|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inxpss | Structured version Visualization version GIF version | ||
| Description: Two ways to say that an intersection with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 16-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| inxpss | ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brinxp2 5763 | . . . . 5 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)) | |
| 2 | 1 | imbi1i 349 | . . . 4 ⊢ ((𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦) → 𝑥𝑆𝑦)) | 
| 3 | impexp 450 | . . . 4 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦) → 𝑥𝑆𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ ((𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) | 
| 5 | 4 | 2albii 1820 | . 2 ⊢ (∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) | 
| 6 | relinxp 5824 | . . 3 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) | |
| 7 | ssrel3 5796 | . . 3 ⊢ (Rel (𝑅 ∩ (𝐴 × 𝐵)) → ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦))) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥∀𝑦(𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 → 𝑥𝑆𝑦)) | 
| 9 | r2al 3195 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 → 𝑥𝑆𝑦))) | |
| 10 | 5, 8, 9 | 3bitr4i 303 | 1 ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ 𝑆 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → 𝑥𝑆𝑦)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2108 ∀wral 3061 ∩ cin 3950 ⊆ wss 3951 class class class wbr 5143 × cxp 5683 Rel wrel 5690 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 | 
| This theorem is referenced by: idinxpss 38313 | 
| Copyright terms: Public domain | W3C validator |