MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssi Structured version   Visualization version   GIF version

Theorem relssi 5696
Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.)
Hypotheses
Ref Expression
relssi.1 Rel 𝐴
relssi.2 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)
Assertion
Ref Expression
relssi 𝐴𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem relssi
StepHypRef Expression
1 relssi.1 . . 3 Rel 𝐴
2 ssrel 5693 . . 3 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
31, 2ax-mp 5 . 2 (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
4 relssi.2 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)
54ax-gen 1802 . 2 𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)
63, 5mpgbir 1806 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540  wcel 2110  wss 3892  cop 4573  Rel wrel 5595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-in 3899  df-ss 3909  df-opab 5142  df-xp 5596  df-rel 5597
This theorem is referenced by:  xpsspw  5718  oprssdm  7448  dftpos4  8053  enssdom  8757  idssen  8777  ttrcltr  9462  txuni2  22727  acycgr0v  33119  prclisacycgr  33122  txpss3v  34189  pprodss4v  34195  bj-idres  35340  xrnss3v  36511  aoprssdm  44673
  Copyright terms: Public domain W3C validator