![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relssi | Structured version Visualization version GIF version |
Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
relssi.1 | ⊢ Rel 𝐴 |
relssi.2 | ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) |
Ref | Expression |
---|---|
relssi | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssi.1 | . . 3 ⊢ Rel 𝐴 | |
2 | ssrel 5743 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
4 | relssi.2 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) | |
5 | 4 | ax-gen 1798 | . 2 ⊢ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) |
6 | 3, 5 | mpgbir 1802 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 ∈ wcel 2107 ⊆ wss 3915 ⟨cop 4597 Rel wrel 5643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3450 df-in 3922 df-ss 3932 df-opab 5173 df-xp 5644 df-rel 5645 |
This theorem is referenced by: xpsspw 5770 oprssdm 7540 dftpos4 8181 enssdom 8924 idssen 8944 ttrcltr 9659 txuni2 22932 acycgr0v 33782 prclisacycgr 33785 txpss3v 34492 pprodss4v 34498 bj-idres 35660 xrnss3v 36863 aoprssdm 45508 |
Copyright terms: Public domain | W3C validator |