Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relssi | Structured version Visualization version GIF version |
Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
relssi.1 | ⊢ Rel 𝐴 |
relssi.2 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) |
Ref | Expression |
---|---|
relssi | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssi.1 | . . 3 ⊢ Rel 𝐴 | |
2 | ssrel 5693 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
4 | relssi.2 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) | |
5 | 4 | ax-gen 1802 | . 2 ⊢ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) |
6 | 3, 5 | mpgbir 1806 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 ∈ wcel 2110 ⊆ wss 3892 〈cop 4573 Rel wrel 5595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ss 3909 df-opab 5142 df-xp 5596 df-rel 5597 |
This theorem is referenced by: xpsspw 5718 oprssdm 7448 dftpos4 8053 enssdom 8757 idssen 8777 ttrcltr 9462 txuni2 22727 acycgr0v 33119 prclisacycgr 33122 txpss3v 34189 pprodss4v 34195 bj-idres 35340 xrnss3v 36511 aoprssdm 44673 |
Copyright terms: Public domain | W3C validator |