| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relssi | Structured version Visualization version GIF version | ||
| Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.) |
| Ref | Expression |
|---|---|
| relssi.1 | ⊢ Rel 𝐴 |
| relssi.2 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| relssi | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relssi.1 | . . 3 ⊢ Rel 𝐴 | |
| 2 | ssrel 5726 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 4 | relssi.2 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) | |
| 5 | 4 | ax-gen 1795 | . 2 ⊢ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) |
| 6 | 3, 5 | mpgbir 1799 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 ⊆ wss 3903 〈cop 4583 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-opab 5155 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: xpsspw 5752 oprssdm 7530 dftpos4 8178 enssdom 8902 idssen 8922 ttrcltr 9612 txuni2 23450 acycgr0v 35141 prclisacycgr 35144 txpss3v 35872 pprodss4v 35878 bj-idres 37154 xrnss3v 38360 aoprssdm 47206 |
| Copyright terms: Public domain | W3C validator |