Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relssi | Structured version Visualization version GIF version |
Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
relssi.1 | ⊢ Rel 𝐴 |
relssi.2 | ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) |
Ref | Expression |
---|---|
relssi | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssi.1 | . . 3 ⊢ Rel 𝐴 | |
2 | ssrel 5693 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
4 | relssi.2 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) | |
5 | 4 | ax-gen 1798 | . 2 ⊢ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) |
6 | 3, 5 | mpgbir 1802 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∈ wcel 2106 ⊆ wss 3887 〈cop 4567 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: xpsspw 5719 oprssdm 7453 dftpos4 8061 enssdom 8765 idssen 8785 ttrcltr 9474 txuni2 22716 acycgr0v 33110 prclisacycgr 33113 txpss3v 34180 pprodss4v 34186 bj-idres 35331 xrnss3v 36502 aoprssdm 44694 |
Copyright terms: Public domain | W3C validator |