MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssi Structured version   Visualization version   GIF version

Theorem relssi 5811
Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.)
Hypotheses
Ref Expression
relssi.1 Rel 𝐴
relssi.2 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)
Assertion
Ref Expression
relssi 𝐴𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem relssi
StepHypRef Expression
1 relssi.1 . . 3 Rel 𝐴
2 ssrel 5806 . . 3 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
31, 2ax-mp 5 . 2 (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
4 relssi.2 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)
54ax-gen 1793 . 2 𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)
63, 5mpgbir 1797 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2108  wss 3976  cop 4654  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-opab 5229  df-xp 5706  df-rel 5707
This theorem is referenced by:  xpsspw  5833  oprssdm  7631  dftpos4  8286  enssdom  9037  idssen  9057  ttrcltr  9785  txuni2  23594  acycgr0v  35116  prclisacycgr  35119  txpss3v  35842  pprodss4v  35848  bj-idres  37126  xrnss3v  38328  aoprssdm  47117
  Copyright terms: Public domain W3C validator