Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > stcltr1i | Structured version Visualization version GIF version |
Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
stcltr1.1 | ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) |
stcltr1.2 | ⊢ 𝐴 ∈ Cℋ |
stcltr1.3 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
stcltr1i | ⊢ (𝜑 → (((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1) → 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stcltr1.1 | . 2 ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) | |
2 | stcltr1.2 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
3 | stcltr1.3 | . . 3 ⊢ 𝐵 ∈ Cℋ | |
4 | fveqeq2 6777 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑆‘𝑥) = 1 ↔ (𝑆‘𝐴) = 1)) | |
5 | 4 | imbi1d 341 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) ↔ ((𝑆‘𝐴) = 1 → (𝑆‘𝑦) = 1))) |
6 | sseq1 3950 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦)) | |
7 | 5, 6 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦) ↔ (((𝑆‘𝐴) = 1 → (𝑆‘𝑦) = 1) → 𝐴 ⊆ 𝑦))) |
8 | fveqeq2 6777 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝑆‘𝑦) = 1 ↔ (𝑆‘𝐵) = 1)) | |
9 | 8 | imbi2d 340 | . . . . 5 ⊢ (𝑦 = 𝐵 → (((𝑆‘𝐴) = 1 → (𝑆‘𝑦) = 1) ↔ ((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1))) |
10 | sseq2 3951 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) | |
11 | 9, 10 | imbi12d 344 | . . . 4 ⊢ (𝑦 = 𝐵 → ((((𝑆‘𝐴) = 1 → (𝑆‘𝑦) = 1) → 𝐴 ⊆ 𝑦) ↔ (((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1) → 𝐴 ⊆ 𝐵))) |
12 | 7, 11 | rspc2v 3570 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦) → (((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1) → 𝐴 ⊆ 𝐵))) |
13 | 2, 3, 12 | mp2an 688 | . 2 ⊢ (∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦) → (((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1) → 𝐴 ⊆ 𝐵)) |
14 | 1, 13 | simplbiim 504 | 1 ⊢ (𝜑 → (((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1) → 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ⊆ wss 3891 ‘cfv 6430 1c1 10856 Cℋ cch 29270 Statescst 29303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 |
This theorem is referenced by: stcltr2i 30616 stcltrlem2 30618 |
Copyright terms: Public domain | W3C validator |