![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > stcltr1i | Structured version Visualization version GIF version |
Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
stcltr1.1 | ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) |
stcltr1.2 | ⊢ 𝐴 ∈ Cℋ |
stcltr1.3 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
stcltr1i | ⊢ (𝜑 → (((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1) → 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stcltr1.1 | . 2 ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) | |
2 | stcltr1.2 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
3 | stcltr1.3 | . . 3 ⊢ 𝐵 ∈ Cℋ | |
4 | fveqeq2 6896 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑆‘𝑥) = 1 ↔ (𝑆‘𝐴) = 1)) | |
5 | 4 | imbi1d 341 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) ↔ ((𝑆‘𝐴) = 1 → (𝑆‘𝑦) = 1))) |
6 | sseq1 3991 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦)) | |
7 | 5, 6 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦) ↔ (((𝑆‘𝐴) = 1 → (𝑆‘𝑦) = 1) → 𝐴 ⊆ 𝑦))) |
8 | fveqeq2 6896 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝑆‘𝑦) = 1 ↔ (𝑆‘𝐵) = 1)) | |
9 | 8 | imbi2d 340 | . . . . 5 ⊢ (𝑦 = 𝐵 → (((𝑆‘𝐴) = 1 → (𝑆‘𝑦) = 1) ↔ ((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1))) |
10 | sseq2 3992 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) | |
11 | 9, 10 | imbi12d 344 | . . . 4 ⊢ (𝑦 = 𝐵 → ((((𝑆‘𝐴) = 1 → (𝑆‘𝑦) = 1) → 𝐴 ⊆ 𝑦) ↔ (((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1) → 𝐴 ⊆ 𝐵))) |
12 | 7, 11 | rspc2v 3617 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦) → (((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1) → 𝐴 ⊆ 𝐵))) |
13 | 2, 3, 12 | mp2an 692 | . 2 ⊢ (∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦) → (((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1) → 𝐴 ⊆ 𝐵)) |
14 | 1, 13 | simplbiim 504 | 1 ⊢ (𝜑 → (((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1) → 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3933 ‘cfv 6542 1c1 11139 Cℋ cch 30895 Statescst 30928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-iota 6495 df-fv 6550 |
This theorem is referenced by: stcltr2i 32241 stcltrlem2 32243 |
Copyright terms: Public domain | W3C validator |