![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > goeqi | Structured version Visualization version GIF version |
Description: Godowski's equation, shown here as a variant equivalent to Equation SF of [Godowski] p. 730. (Contributed by NM, 10-Nov-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
goeq.1 | ⊢ 𝐴 ∈ Cℋ |
goeq.2 | ⊢ 𝐵 ∈ Cℋ |
goeq.3 | ⊢ 𝐶 ∈ Cℋ |
goeq.4 | ⊢ 𝐹 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) |
goeq.5 | ⊢ 𝐺 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) |
goeq.6 | ⊢ 𝐻 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) |
goeq.7 | ⊢ 𝐷 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) |
Ref | Expression |
---|---|
goeqi | ⊢ ((𝐹 ∩ 𝐺) ∩ 𝐻) ⊆ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | goeq.4 | . . . . . 6 ⊢ 𝐹 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) | |
2 | goeq.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Cℋ | |
3 | 2 | choccli 30815 | . . . . . . 7 ⊢ (⊥‘𝐴) ∈ Cℋ |
4 | goeq.2 | . . . . . . . 8 ⊢ 𝐵 ∈ Cℋ | |
5 | 2, 4 | chincli 30968 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
6 | 3, 5 | chjcli 30965 | . . . . . 6 ⊢ ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) ∈ Cℋ |
7 | 1, 6 | eqeltri 2829 | . . . . 5 ⊢ 𝐹 ∈ Cℋ |
8 | goeq.5 | . . . . . 6 ⊢ 𝐺 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) | |
9 | 4 | choccli 30815 | . . . . . . 7 ⊢ (⊥‘𝐵) ∈ Cℋ |
10 | goeq.3 | . . . . . . . 8 ⊢ 𝐶 ∈ Cℋ | |
11 | 4, 10 | chincli 30968 | . . . . . . 7 ⊢ (𝐵 ∩ 𝐶) ∈ Cℋ |
12 | 9, 11 | chjcli 30965 | . . . . . 6 ⊢ ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) ∈ Cℋ |
13 | 8, 12 | eqeltri 2829 | . . . . 5 ⊢ 𝐺 ∈ Cℋ |
14 | 7, 13 | chincli 30968 | . . . 4 ⊢ (𝐹 ∩ 𝐺) ∈ Cℋ |
15 | goeq.6 | . . . . 5 ⊢ 𝐻 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) | |
16 | 10 | choccli 30815 | . . . . . 6 ⊢ (⊥‘𝐶) ∈ Cℋ |
17 | 10, 2 | chincli 30968 | . . . . . 6 ⊢ (𝐶 ∩ 𝐴) ∈ Cℋ |
18 | 16, 17 | chjcli 30965 | . . . . 5 ⊢ ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) ∈ Cℋ |
19 | 15, 18 | eqeltri 2829 | . . . 4 ⊢ 𝐻 ∈ Cℋ |
20 | 14, 19 | chincli 30968 | . . 3 ⊢ ((𝐹 ∩ 𝐺) ∩ 𝐻) ∈ Cℋ |
21 | goeq.7 | . . . 4 ⊢ 𝐷 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) | |
22 | 4, 2 | chincli 30968 | . . . . 5 ⊢ (𝐵 ∩ 𝐴) ∈ Cℋ |
23 | 9, 22 | chjcli 30965 | . . . 4 ⊢ ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) ∈ Cℋ |
24 | 21, 23 | eqeltri 2829 | . . 3 ⊢ 𝐷 ∈ Cℋ |
25 | 20, 24 | stri 31765 | . 2 ⊢ (∀𝑓 ∈ States ((𝑓‘((𝐹 ∩ 𝐺) ∩ 𝐻)) = 1 → (𝑓‘𝐷) = 1) → ((𝐹 ∩ 𝐺) ∩ 𝐻) ⊆ 𝐷) |
26 | eqid 2732 | . . 3 ⊢ ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐵)) = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐵)) | |
27 | eqid 2732 | . . 3 ⊢ ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐶)) = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐶)) | |
28 | 2, 4, 10, 1, 8, 15, 21, 26, 27 | golem2 31780 | . 2 ⊢ (𝑓 ∈ States → ((𝑓‘((𝐹 ∩ 𝐺) ∩ 𝐻)) = 1 → (𝑓‘𝐷) = 1)) |
29 | 25, 28 | mprg 3067 | 1 ⊢ ((𝐹 ∩ 𝐺) ∩ 𝐻) ⊆ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∩ cin 3947 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7411 1c1 11113 Cℋ cch 30437 ⊥cort 30438 ∨ℋ chj 30441 Statescst 30470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cc 10432 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 ax-hilex 30507 ax-hfvadd 30508 ax-hvcom 30509 ax-hvass 30510 ax-hv0cl 30511 ax-hvaddid 30512 ax-hfvmul 30513 ax-hvmulid 30514 ax-hvmulass 30515 ax-hvdistr1 30516 ax-hvdistr2 30517 ax-hvmul0 30518 ax-hfi 30587 ax-his1 30590 ax-his2 30591 ax-his3 30592 ax-his4 30593 ax-hcompl 30710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-oadd 8472 df-omul 8473 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-acn 9939 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-ico 13334 df-icc 13335 df-fz 13489 df-fzo 13632 df-fl 13761 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-sum 15637 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-pt 17394 df-prds 17397 df-xrs 17452 df-qtop 17457 df-imas 17458 df-xps 17460 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18987 df-cntz 19222 df-cmn 19691 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-fbas 21141 df-fg 21142 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cld 22743 df-ntr 22744 df-cls 22745 df-nei 22822 df-cn 22951 df-cnp 22952 df-lm 22953 df-haus 23039 df-tx 23286 df-hmeo 23479 df-fil 23570 df-fm 23662 df-flim 23663 df-flf 23664 df-xms 24046 df-ms 24047 df-tms 24048 df-cfil 24996 df-cau 24997 df-cmet 24998 df-grpo 30001 df-gid 30002 df-ginv 30003 df-gdiv 30004 df-ablo 30053 df-vc 30067 df-nv 30100 df-va 30103 df-ba 30104 df-sm 30105 df-0v 30106 df-vs 30107 df-nmcv 30108 df-ims 30109 df-dip 30209 df-ssp 30230 df-ph 30321 df-cbn 30371 df-hnorm 30476 df-hba 30477 df-hvsub 30479 df-hlim 30480 df-hcau 30481 df-sh 30715 df-ch 30729 df-oc 30760 df-ch0 30761 df-shs 30816 df-chj 30818 df-pjh 30903 df-st 31719 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |