| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > stcltr2i | Structured version Visualization version GIF version | ||
| Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| stcltr1.1 | ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) |
| stcltr1.2 | ⊢ 𝐴 ∈ Cℋ |
| Ref | Expression |
|---|---|
| stcltr2i | ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → 𝐴 = ℋ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . . 3 ⊢ ((𝑆‘𝐴) = 1 → ((𝑆‘ ℋ) = 1 → (𝑆‘𝐴) = 1)) | |
| 2 | stcltr1.1 | . . . 4 ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) | |
| 3 | helch 31209 | . . . 4 ⊢ ℋ ∈ Cℋ | |
| 4 | stcltr1.2 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
| 5 | 2, 3, 4 | stcltr1i 32240 | . . 3 ⊢ (𝜑 → (((𝑆‘ ℋ) = 1 → (𝑆‘𝐴) = 1) → ℋ ⊆ 𝐴)) |
| 6 | 1, 5 | syl5 34 | . 2 ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → ℋ ⊆ 𝐴)) |
| 7 | 4 | chssii 31197 | . . 3 ⊢ 𝐴 ⊆ ℋ |
| 8 | eqss 3981 | . . 3 ⊢ (𝐴 = ℋ ↔ (𝐴 ⊆ ℋ ∧ ℋ ⊆ 𝐴)) | |
| 9 | 7, 8 | mpbiran 709 | . 2 ⊢ (𝐴 = ℋ ↔ ℋ ⊆ 𝐴) |
| 10 | 6, 9 | imbitrrdi 252 | 1 ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → 𝐴 = ℋ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3933 ‘cfv 6542 1c1 11139 ℋchba 30885 Cℋ cch 30895 Statescst 30928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-1cn 11196 ax-addcl 11198 ax-hilex 30965 ax-hfvadd 30966 ax-hv0cl 30969 ax-hfvmul 30971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-map 8851 df-nn 12250 df-hlim 30938 df-sh 31173 df-ch 31187 |
| This theorem is referenced by: stcltrlem1 32242 |
| Copyright terms: Public domain | W3C validator |