Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > stcltr2i | Structured version Visualization version GIF version |
Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
stcltr1.1 | ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) |
stcltr1.2 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
stcltr2i | ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → 𝐴 = ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . 3 ⊢ ((𝑆‘𝐴) = 1 → ((𝑆‘ ℋ) = 1 → (𝑆‘𝐴) = 1)) | |
2 | stcltr1.1 | . . . 4 ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) | |
3 | helch 29650 | . . . 4 ⊢ ℋ ∈ Cℋ | |
4 | stcltr1.2 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
5 | 2, 3, 4 | stcltr1i 30681 | . . 3 ⊢ (𝜑 → (((𝑆‘ ℋ) = 1 → (𝑆‘𝐴) = 1) → ℋ ⊆ 𝐴)) |
6 | 1, 5 | syl5 34 | . 2 ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → ℋ ⊆ 𝐴)) |
7 | 4 | chssii 29638 | . . 3 ⊢ 𝐴 ⊆ ℋ |
8 | eqss 3941 | . . 3 ⊢ (𝐴 = ℋ ↔ (𝐴 ⊆ ℋ ∧ ℋ ⊆ 𝐴)) | |
9 | 7, 8 | mpbiran 707 | . 2 ⊢ (𝐴 = ℋ ↔ ℋ ⊆ 𝐴) |
10 | 6, 9 | syl6ibr 252 | 1 ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → 𝐴 = ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ⊆ wss 3892 ‘cfv 6458 1c1 10918 ℋchba 29326 Cℋ cch 29336 Statescst 29369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-1cn 10975 ax-addcl 10977 ax-hilex 29406 ax-hfvadd 29407 ax-hv0cl 29410 ax-hfvmul 29412 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-map 8648 df-nn 12020 df-hlim 29379 df-sh 29614 df-ch 29628 |
This theorem is referenced by: stcltrlem1 30683 |
Copyright terms: Public domain | W3C validator |