HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stcltr2i Structured version   Visualization version   GIF version

Theorem stcltr2i 32304
Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stcltr1.1 (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦)))
stcltr1.2 𝐴C
Assertion
Ref Expression
stcltr2i (𝜑 → ((𝑆𝐴) = 1 → 𝐴 = ℋ))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem stcltr2i
StepHypRef Expression
1 ax-1 6 . . 3 ((𝑆𝐴) = 1 → ((𝑆‘ ℋ) = 1 → (𝑆𝐴) = 1))
2 stcltr1.1 . . . 4 (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦)))
3 helch 31272 . . . 4 ℋ ∈ C
4 stcltr1.2 . . . 4 𝐴C
52, 3, 4stcltr1i 32303 . . 3 (𝜑 → (((𝑆‘ ℋ) = 1 → (𝑆𝐴) = 1) → ℋ ⊆ 𝐴))
61, 5syl5 34 . 2 (𝜑 → ((𝑆𝐴) = 1 → ℋ ⊆ 𝐴))
74chssii 31260 . . 3 𝐴 ⊆ ℋ
8 eqss 4011 . . 3 (𝐴 = ℋ ↔ (𝐴 ⊆ ℋ ∧ ℋ ⊆ 𝐴))
97, 8mpbiran 709 . 2 (𝐴 = ℋ ↔ ℋ ⊆ 𝐴)
106, 9imbitrrdi 252 1 (𝜑 → ((𝑆𝐴) = 1 → 𝐴 = ℋ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963  cfv 6563  1c1 11154  chba 30948   C cch 30958  Statescst 30991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-1cn 11211  ax-addcl 11213  ax-hilex 31028  ax-hfvadd 31029  ax-hv0cl 31032  ax-hfvmul 31034
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-map 8867  df-nn 12265  df-hlim 31001  df-sh 31236  df-ch 31250
This theorem is referenced by:  stcltrlem1  32305
  Copyright terms: Public domain W3C validator