HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stcltr2i Structured version   Visualization version   GIF version

Theorem stcltr2i 30616
Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stcltr1.1 (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦)))
stcltr1.2 𝐴C
Assertion
Ref Expression
stcltr2i (𝜑 → ((𝑆𝐴) = 1 → 𝐴 = ℋ))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem stcltr2i
StepHypRef Expression
1 ax-1 6 . . 3 ((𝑆𝐴) = 1 → ((𝑆‘ ℋ) = 1 → (𝑆𝐴) = 1))
2 stcltr1.1 . . . 4 (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦)))
3 helch 29584 . . . 4 ℋ ∈ C
4 stcltr1.2 . . . 4 𝐴C
52, 3, 4stcltr1i 30615 . . 3 (𝜑 → (((𝑆‘ ℋ) = 1 → (𝑆𝐴) = 1) → ℋ ⊆ 𝐴))
61, 5syl5 34 . 2 (𝜑 → ((𝑆𝐴) = 1 → ℋ ⊆ 𝐴))
74chssii 29572 . . 3 𝐴 ⊆ ℋ
8 eqss 3940 . . 3 (𝐴 = ℋ ↔ (𝐴 ⊆ ℋ ∧ ℋ ⊆ 𝐴))
97, 8mpbiran 705 . 2 (𝐴 = ℋ ↔ ℋ ⊆ 𝐴)
106, 9syl6ibr 251 1 (𝜑 → ((𝑆𝐴) = 1 → 𝐴 = ℋ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wral 3065  wss 3891  cfv 6430  1c1 10856  chba 29260   C cch 29270  Statescst 29303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-1cn 10913  ax-addcl 10915  ax-hilex 29340  ax-hfvadd 29341  ax-hv0cl 29344  ax-hfvmul 29346
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-map 8591  df-nn 11957  df-hlim 29313  df-sh 29548  df-ch 29562
This theorem is referenced by:  stcltrlem1  30617
  Copyright terms: Public domain W3C validator