![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > stcltr2i | Structured version Visualization version GIF version |
Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
stcltr1.1 | ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) |
stcltr1.2 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
stcltr2i | ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → 𝐴 = ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . 3 ⊢ ((𝑆‘𝐴) = 1 → ((𝑆‘ ℋ) = 1 → (𝑆‘𝐴) = 1)) | |
2 | stcltr1.1 | . . . 4 ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) | |
3 | helch 31081 | . . . 4 ⊢ ℋ ∈ Cℋ | |
4 | stcltr1.2 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
5 | 2, 3, 4 | stcltr1i 32112 | . . 3 ⊢ (𝜑 → (((𝑆‘ ℋ) = 1 → (𝑆‘𝐴) = 1) → ℋ ⊆ 𝐴)) |
6 | 1, 5 | syl5 34 | . 2 ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → ℋ ⊆ 𝐴)) |
7 | 4 | chssii 31069 | . . 3 ⊢ 𝐴 ⊆ ℋ |
8 | eqss 3997 | . . 3 ⊢ (𝐴 = ℋ ↔ (𝐴 ⊆ ℋ ∧ ℋ ⊆ 𝐴)) | |
9 | 7, 8 | mpbiran 707 | . 2 ⊢ (𝐴 = ℋ ↔ ℋ ⊆ 𝐴) |
10 | 6, 9 | imbitrrdi 251 | 1 ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → 𝐴 = ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ⊆ wss 3949 ‘cfv 6553 1c1 11149 ℋchba 30757 Cℋ cch 30767 Statescst 30800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-1cn 11206 ax-addcl 11208 ax-hilex 30837 ax-hfvadd 30838 ax-hv0cl 30841 ax-hfvmul 30843 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-map 8855 df-nn 12253 df-hlim 30810 df-sh 31045 df-ch 31059 |
This theorem is referenced by: stcltrlem1 32114 |
Copyright terms: Public domain | W3C validator |