| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > stcltr2i | Structured version Visualization version GIF version | ||
| Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| stcltr1.1 | ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) |
| stcltr1.2 | ⊢ 𝐴 ∈ Cℋ |
| Ref | Expression |
|---|---|
| stcltr2i | ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → 𝐴 = ℋ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . . 3 ⊢ ((𝑆‘𝐴) = 1 → ((𝑆‘ ℋ) = 1 → (𝑆‘𝐴) = 1)) | |
| 2 | stcltr1.1 | . . . 4 ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) | |
| 3 | helch 31172 | . . . 4 ⊢ ℋ ∈ Cℋ | |
| 4 | stcltr1.2 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
| 5 | 2, 3, 4 | stcltr1i 32203 | . . 3 ⊢ (𝜑 → (((𝑆‘ ℋ) = 1 → (𝑆‘𝐴) = 1) → ℋ ⊆ 𝐴)) |
| 6 | 1, 5 | syl5 34 | . 2 ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → ℋ ⊆ 𝐴)) |
| 7 | 4 | chssii 31160 | . . 3 ⊢ 𝐴 ⊆ ℋ |
| 8 | eqss 3962 | . . 3 ⊢ (𝐴 = ℋ ↔ (𝐴 ⊆ ℋ ∧ ℋ ⊆ 𝐴)) | |
| 9 | 7, 8 | mpbiran 709 | . 2 ⊢ (𝐴 = ℋ ↔ ℋ ⊆ 𝐴) |
| 10 | 6, 9 | imbitrrdi 252 | 1 ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → 𝐴 = ℋ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ‘cfv 6511 1c1 11069 ℋchba 30848 Cℋ cch 30858 Statescst 30891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 ax-hilex 30928 ax-hfvadd 30929 ax-hv0cl 30932 ax-hfvmul 30934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-map 8801 df-nn 12187 df-hlim 30901 df-sh 31136 df-ch 31150 |
| This theorem is referenced by: stcltrlem1 32205 |
| Copyright terms: Public domain | W3C validator |