| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > stcltr2i | Structured version Visualization version GIF version | ||
| Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| stcltr1.1 | ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) |
| stcltr1.2 | ⊢ 𝐴 ∈ Cℋ |
| Ref | Expression |
|---|---|
| stcltr2i | ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → 𝐴 = ℋ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . . 3 ⊢ ((𝑆‘𝐴) = 1 → ((𝑆‘ ℋ) = 1 → (𝑆‘𝐴) = 1)) | |
| 2 | stcltr1.1 | . . . 4 ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) | |
| 3 | helch 31145 | . . . 4 ⊢ ℋ ∈ Cℋ | |
| 4 | stcltr1.2 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
| 5 | 2, 3, 4 | stcltr1i 32176 | . . 3 ⊢ (𝜑 → (((𝑆‘ ℋ) = 1 → (𝑆‘𝐴) = 1) → ℋ ⊆ 𝐴)) |
| 6 | 1, 5 | syl5 34 | . 2 ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → ℋ ⊆ 𝐴)) |
| 7 | 4 | chssii 31133 | . . 3 ⊢ 𝐴 ⊆ ℋ |
| 8 | eqss 3959 | . . 3 ⊢ (𝐴 = ℋ ↔ (𝐴 ⊆ ℋ ∧ ℋ ⊆ 𝐴)) | |
| 9 | 7, 8 | mpbiran 709 | . 2 ⊢ (𝐴 = ℋ ↔ ℋ ⊆ 𝐴) |
| 10 | 6, 9 | imbitrrdi 252 | 1 ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → 𝐴 = ℋ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ‘cfv 6499 1c1 11045 ℋchba 30821 Cℋ cch 30831 Statescst 30864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-1cn 11102 ax-addcl 11104 ax-hilex 30901 ax-hfvadd 30902 ax-hv0cl 30905 ax-hfvmul 30907 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-map 8778 df-nn 12163 df-hlim 30874 df-sh 31109 df-ch 31123 |
| This theorem is referenced by: stcltrlem1 32178 |
| Copyright terms: Public domain | W3C validator |