Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucmapsuc Structured version   Visualization version   GIF version

Theorem sucmapsuc 38511
Description: A set is succeeded by its successor. (Contributed by Peter Mazsa, 7-Jan-2026.)
Assertion
Ref Expression
sucmapsuc (𝑀𝑉𝑀 SucMap suc 𝑀)

Proof of Theorem sucmapsuc
StepHypRef Expression
1 eqid 2731 . 2 suc 𝑀 = suc 𝑀
2 sucexg 7738 . . 3 (𝑀𝑉 → suc 𝑀 ∈ V)
3 brsucmap 38489 . . 3 ((𝑀𝑉 ∧ suc 𝑀 ∈ V) → (𝑀 SucMap suc 𝑀 ↔ suc 𝑀 = suc 𝑀))
42, 3mpdan 687 . 2 (𝑀𝑉 → (𝑀 SucMap suc 𝑀 ↔ suc 𝑀 = suc 𝑀))
51, 4mpbiri 258 1 (𝑀𝑉𝑀 SucMap suc 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  Vcvv 3436   class class class wbr 5089  suc csuc 6308   SucMap csucmap 38227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-suc 6312  df-sucmap 38485
This theorem is referenced by:  presuc  38520
  Copyright terms: Public domain W3C validator