| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sucmapsuc | Structured version Visualization version GIF version | ||
| Description: A set is succeeded by its successor. (Contributed by Peter Mazsa, 7-Jan-2026.) |
| Ref | Expression |
|---|---|
| sucmapsuc | ⊢ (𝑀 ∈ 𝑉 → 𝑀 SucMap suc 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ suc 𝑀 = suc 𝑀 | |
| 2 | sucexg 7738 | . . 3 ⊢ (𝑀 ∈ 𝑉 → suc 𝑀 ∈ V) | |
| 3 | brsucmap 38489 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ suc 𝑀 ∈ V) → (𝑀 SucMap suc 𝑀 ↔ suc 𝑀 = suc 𝑀)) | |
| 4 | 2, 3 | mpdan 687 | . 2 ⊢ (𝑀 ∈ 𝑉 → (𝑀 SucMap suc 𝑀 ↔ suc 𝑀 = suc 𝑀)) |
| 5 | 1, 4 | mpbiri 258 | 1 ⊢ (𝑀 ∈ 𝑉 → 𝑀 SucMap suc 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 suc csuc 6308 SucMap csucmap 38227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-suc 6312 df-sucmap 38485 |
| This theorem is referenced by: presuc 38520 |
| Copyright terms: Public domain | W3C validator |