![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucexg | Structured version Visualization version GIF version |
Description: The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
sucexg | ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3398 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | sucexb 7241 | . 2 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
3 | 1, 2 | sylib 210 | 1 ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 Vcvv 3383 suc csuc 5941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-rex 3093 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-sn 4367 df-pr 4369 df-uni 4627 df-suc 5945 |
This theorem is referenced by: sucex 7243 suceloni 7245 hsmexlem1 9534 dfon2lem3 32194 |
Copyright terms: Public domain | W3C validator |