| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucexg | Structured version Visualization version GIF version | ||
| Description: The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| sucexg | ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3480 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | sucexb 7798 | . 2 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 suc csuc 6354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-uni 4884 df-suc 6358 |
| This theorem is referenced by: sucex 7800 onsuc 7805 suceloniOLD 7806 cofon1 8684 cofon2 8685 hsmexlem1 10440 dfon2lem3 35803 inaex 44321 |
| Copyright terms: Public domain | W3C validator |