MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucexg Structured version   Visualization version   GIF version

Theorem sucexg 7787
Description: The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
sucexg (𝐴𝑉 → suc 𝐴 ∈ V)

Proof of Theorem sucexg
StepHypRef Expression
1 elex 3485 . 2 (𝐴𝑉𝐴 ∈ V)
2 sucexb 7786 . 2 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
31, 2sylib 217 1 (𝐴𝑉 → suc 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Vcvv 3466  suc csuc 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-sn 4622  df-pr 4624  df-uni 4901  df-suc 6361
This theorem is referenced by:  sucex  7788  onsuc  7793  suceloniOLD  7794  cofon1  8668  cofon2  8669  hsmexlem1  10418  dfon2lem3  35253  inaex  43570
  Copyright terms: Public domain W3C validator