| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucexg | Structured version Visualization version GIF version | ||
| Description: The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| sucexg | ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3458 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | sucexb 7746 | . 2 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 suc csuc 6316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-sn 4578 df-pr 4580 df-uni 4861 df-suc 6320 |
| This theorem is referenced by: sucex 7748 onsuc 7752 cofon1 8596 cofon2 8597 hsmexlem1 10328 fineqvnttrclse 35216 dfon2lem3 35899 dmsucmap 38554 sucmapsuc 38574 inaex 44454 |
| Copyright terms: Public domain | W3C validator |