![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucexg | Structured version Visualization version GIF version |
Description: The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
sucexg | ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3485 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | sucexb 7786 | . 2 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Vcvv 3466 suc csuc 6357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-sn 4622 df-pr 4624 df-uni 4901 df-suc 6361 |
This theorem is referenced by: sucex 7788 onsuc 7793 suceloniOLD 7794 cofon1 8668 cofon2 8669 hsmexlem1 10418 dfon2lem3 35253 inaex 43570 |
Copyright terms: Public domain | W3C validator |