MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucexg Structured version   Visualization version   GIF version

Theorem sucexg 7784
Description: The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
sucexg (𝐴𝑉 → suc 𝐴 ∈ V)

Proof of Theorem sucexg
StepHypRef Expression
1 elex 3471 . 2 (𝐴𝑉𝐴 ∈ V)
2 sucexb 7783 . 2 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
31, 2sylib 218 1 (𝐴𝑉 → suc 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3450  suc csuc 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-sn 4593  df-pr 4595  df-uni 4875  df-suc 6341
This theorem is referenced by:  sucex  7785  onsuc  7790  cofon1  8639  cofon2  8640  hsmexlem1  10386  dfon2lem3  35780  inaex  44293
  Copyright terms: Public domain W3C validator