MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucexg Structured version   Visualization version   GIF version

Theorem sucexg 7761
Description: The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
sucexg (𝐴𝑉 → suc 𝐴 ∈ V)

Proof of Theorem sucexg
StepHypRef Expression
1 elex 3465 . 2 (𝐴𝑉𝐴 ∈ V)
2 sucexb 7760 . 2 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
31, 2sylib 218 1 (𝐴𝑉 → suc 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3444  suc csuc 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-sn 4586  df-pr 4588  df-uni 4868  df-suc 6326
This theorem is referenced by:  sucex  7762  onsuc  7767  cofon1  8613  cofon2  8614  hsmexlem1  10355  dfon2lem3  35746  inaex  44259
  Copyright terms: Public domain W3C validator