MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucexg Structured version   Visualization version   GIF version

Theorem sucexg 7747
Description: The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
sucexg (𝐴𝑉 → suc 𝐴 ∈ V)

Proof of Theorem sucexg
StepHypRef Expression
1 elex 3458 . 2 (𝐴𝑉𝐴 ∈ V)
2 sucexb 7746 . 2 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
31, 2sylib 218 1 (𝐴𝑉 → suc 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Vcvv 3437  suc csuc 6316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-sn 4578  df-pr 4580  df-uni 4861  df-suc 6320
This theorem is referenced by:  sucex  7748  onsuc  7752  cofon1  8596  cofon2  8597  hsmexlem1  10328  fineqvnttrclse  35216  dfon2lem3  35899  dmsucmap  38554  sucmapsuc  38574  inaex  44454
  Copyright terms: Public domain W3C validator