Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucmapleftuniq Structured version   Visualization version   GIF version

Theorem sucmapleftuniq 38512
Description: Left uniqueness of the successor mapping. (Contributed by Peter Mazsa, 8-Jan-2026.)
Assertion
Ref Expression
sucmapleftuniq ((𝐿𝑉𝑀𝑊𝑁𝑋) → ((𝐿 SucMap 𝑁𝑀 SucMap 𝑁) → 𝐿 = 𝑀))

Proof of Theorem sucmapleftuniq
StepHypRef Expression
1 brsucmap 38489 . . . . 5 ((𝐿𝑉𝑁𝑋) → (𝐿 SucMap 𝑁 ↔ suc 𝐿 = 𝑁))
2 brsucmap 38489 . . . . 5 ((𝑀𝑊𝑁𝑋) → (𝑀 SucMap 𝑁 ↔ suc 𝑀 = 𝑁))
31, 2bi2anan9 638 . . . 4 (((𝐿𝑉𝑁𝑋) ∧ (𝑀𝑊𝑁𝑋)) → ((𝐿 SucMap 𝑁𝑀 SucMap 𝑁) ↔ (suc 𝐿 = 𝑁 ∧ suc 𝑀 = 𝑁)))
433impdir 1352 . . 3 ((𝐿𝑉𝑀𝑊𝑁𝑋) → ((𝐿 SucMap 𝑁𝑀 SucMap 𝑁) ↔ (suc 𝐿 = 𝑁 ∧ suc 𝑀 = 𝑁)))
5 eqtr3 2753 . . 3 ((suc 𝐿 = 𝑁 ∧ suc 𝑀 = 𝑁) → suc 𝐿 = suc 𝑀)
64, 5biimtrdi 253 . 2 ((𝐿𝑉𝑀𝑊𝑁𝑋) → ((𝐿 SucMap 𝑁𝑀 SucMap 𝑁) → suc 𝐿 = suc 𝑀))
7 suc11reg 9509 . 2 (suc 𝐿 = suc 𝑀𝐿 = 𝑀)
86, 7imbitrdi 251 1 ((𝐿𝑉𝑀𝑊𝑁𝑋) → ((𝐿 SucMap 𝑁𝑀 SucMap 𝑁) → 𝐿 = 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  suc csuc 6308   SucMap csucmap 38227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-eprel 5514  df-fr 5567  df-suc 6312  df-sucmap 38485
This theorem is referenced by:  preuniqval  38518
  Copyright terms: Public domain W3C validator