| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sucmapleftuniq | Structured version Visualization version GIF version | ||
| Description: Left uniqueness of the successor mapping. (Contributed by Peter Mazsa, 8-Jan-2026.) |
| Ref | Expression |
|---|---|
| sucmapleftuniq | ⊢ ((𝐿 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋) → ((𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁) → 𝐿 = 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsucmap 38489 | . . . . 5 ⊢ ((𝐿 ∈ 𝑉 ∧ 𝑁 ∈ 𝑋) → (𝐿 SucMap 𝑁 ↔ suc 𝐿 = 𝑁)) | |
| 2 | brsucmap 38489 | . . . . 5 ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋) → (𝑀 SucMap 𝑁 ↔ suc 𝑀 = 𝑁)) | |
| 3 | 1, 2 | bi2anan9 638 | . . . 4 ⊢ (((𝐿 ∈ 𝑉 ∧ 𝑁 ∈ 𝑋) ∧ (𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋)) → ((𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁) ↔ (suc 𝐿 = 𝑁 ∧ suc 𝑀 = 𝑁))) |
| 4 | 3 | 3impdir 1352 | . . 3 ⊢ ((𝐿 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋) → ((𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁) ↔ (suc 𝐿 = 𝑁 ∧ suc 𝑀 = 𝑁))) |
| 5 | eqtr3 2753 | . . 3 ⊢ ((suc 𝐿 = 𝑁 ∧ suc 𝑀 = 𝑁) → suc 𝐿 = suc 𝑀) | |
| 6 | 4, 5 | biimtrdi 253 | . 2 ⊢ ((𝐿 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋) → ((𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁) → suc 𝐿 = suc 𝑀)) |
| 7 | suc11reg 9509 | . 2 ⊢ (suc 𝐿 = suc 𝑀 ↔ 𝐿 = 𝑀) | |
| 8 | 6, 7 | imbitrdi 251 | 1 ⊢ ((𝐿 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋) → ((𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁) → 𝐿 = 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 suc csuc 6308 SucMap csucmap 38227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-eprel 5514 df-fr 5567 df-suc 6312 df-sucmap 38485 |
| This theorem is referenced by: preuniqval 38518 |
| Copyright terms: Public domain | W3C validator |