Proof of Theorem swoord1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | id 22 | . . . 4
⊢ (𝜑 → 𝜑) | 
| 2 |  | swoord.6 | . . . . 5
⊢ (𝜑 → 𝐴𝑅𝐵) | 
| 3 |  | swoer.1 | . . . . . . 7
⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) | 
| 4 |  | difss 4136 | . . . . . . 7
⊢ ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) ⊆ (𝑋 × 𝑋) | 
| 5 | 3, 4 | eqsstri 4030 | . . . . . 6
⊢ 𝑅 ⊆ (𝑋 × 𝑋) | 
| 6 | 5 | ssbri 5188 | . . . . 5
⊢ (𝐴𝑅𝐵 → 𝐴(𝑋 × 𝑋)𝐵) | 
| 7 |  | df-br 5144 | . . . . . 6
⊢ (𝐴(𝑋 × 𝑋)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | 
| 8 |  | opelxp1 5727 | . . . . . 6
⊢
(〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) → 𝐴 ∈ 𝑋) | 
| 9 | 7, 8 | sylbi 217 | . . . . 5
⊢ (𝐴(𝑋 × 𝑋)𝐵 → 𝐴 ∈ 𝑋) | 
| 10 | 2, 6, 9 | 3syl 18 | . . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑋) | 
| 11 |  | swoord.5 | . . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑋) | 
| 12 |  | swoord.4 | . . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑋) | 
| 13 |  | swoer.3 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) | 
| 14 | 13 | swopolem 5602 | . . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴 < 𝐶 → (𝐴 < 𝐵 ∨ 𝐵 < 𝐶))) | 
| 15 | 1, 10, 11, 12, 14 | syl13anc 1374 | . . 3
⊢ (𝜑 → (𝐴 < 𝐶 → (𝐴 < 𝐵 ∨ 𝐵 < 𝐶))) | 
| 16 | 3 | brdifun 8775 | . . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | 
| 17 | 10, 12, 16 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | 
| 18 | 2, 17 | mpbid 232 | . . . . 5
⊢ (𝜑 → ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) | 
| 19 |  | orc 868 | . . . . 5
⊢ (𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) | 
| 20 | 18, 19 | nsyl 140 | . . . 4
⊢ (𝜑 → ¬ 𝐴 < 𝐵) | 
| 21 |  | biorf 937 | . . . 4
⊢ (¬
𝐴 < 𝐵 → (𝐵 < 𝐶 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐶))) | 
| 22 | 20, 21 | syl 17 | . . 3
⊢ (𝜑 → (𝐵 < 𝐶 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐶))) | 
| 23 | 15, 22 | sylibrd 259 | . 2
⊢ (𝜑 → (𝐴 < 𝐶 → 𝐵 < 𝐶)) | 
| 24 | 13 | swopolem 5602 | . . . 4
⊢ ((𝜑 ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐵 < 𝐶 → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) | 
| 25 | 1, 12, 11, 10, 24 | syl13anc 1374 | . . 3
⊢ (𝜑 → (𝐵 < 𝐶 → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) | 
| 26 |  | olc 869 | . . . . 5
⊢ (𝐵 < 𝐴 → (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) | 
| 27 | 18, 26 | nsyl 140 | . . . 4
⊢ (𝜑 → ¬ 𝐵 < 𝐴) | 
| 28 |  | biorf 937 | . . . 4
⊢ (¬
𝐵 < 𝐴 → (𝐴 < 𝐶 ↔ (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) | 
| 29 | 27, 28 | syl 17 | . . 3
⊢ (𝜑 → (𝐴 < 𝐶 ↔ (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) | 
| 30 | 25, 29 | sylibrd 259 | . 2
⊢ (𝜑 → (𝐵 < 𝐶 → 𝐴 < 𝐶)) | 
| 31 | 23, 30 | impbid 212 | 1
⊢ (𝜑 → (𝐴 < 𝐶 ↔ 𝐵 < 𝐶)) |