MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swoord2 Structured version   Visualization version   GIF version

Theorem swoord2 8796
Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypotheses
Ref Expression
swoer.1 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
swoer.2 ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))
swoer.3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
swoord.4 (𝜑𝐵𝑋)
swoord.5 (𝜑𝐶𝑋)
swoord.6 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
swoord2 (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧, <   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)

Proof of Theorem swoord2
StepHypRef Expression
1 id 22 . . . 4 (𝜑𝜑)
2 swoord.5 . . . 4 (𝜑𝐶𝑋)
3 swoord.6 . . . . 5 (𝜑𝐴𝑅𝐵)
4 swoer.1 . . . . . . 7 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
5 difss 4159 . . . . . . 7 ((𝑋 × 𝑋) ∖ ( < < )) ⊆ (𝑋 × 𝑋)
64, 5eqsstri 4043 . . . . . 6 𝑅 ⊆ (𝑋 × 𝑋)
76ssbri 5211 . . . . 5 (𝐴𝑅𝐵𝐴(𝑋 × 𝑋)𝐵)
8 df-br 5167 . . . . . 6 (𝐴(𝑋 × 𝑋)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
9 opelxp1 5742 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) → 𝐴𝑋)
108, 9sylbi 217 . . . . 5 (𝐴(𝑋 × 𝑋)𝐵𝐴𝑋)
113, 7, 103syl 18 . . . 4 (𝜑𝐴𝑋)
12 swoord.4 . . . 4 (𝜑𝐵𝑋)
13 swoer.3 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
1413swopolem 5618 . . . 4 ((𝜑 ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
151, 2, 11, 12, 14syl13anc 1372 . . 3 (𝜑 → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
16 idd 24 . . . 4 (𝜑 → (𝐶 < 𝐵𝐶 < 𝐵))
174brdifun 8793 . . . . . . . 8 ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
1811, 12, 17syl2anc 583 . . . . . . 7 (𝜑 → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
193, 18mpbid 232 . . . . . 6 (𝜑 → ¬ (𝐴 < 𝐵𝐵 < 𝐴))
20 olc 867 . . . . . 6 (𝐵 < 𝐴 → (𝐴 < 𝐵𝐵 < 𝐴))
2119, 20nsyl 140 . . . . 5 (𝜑 → ¬ 𝐵 < 𝐴)
2221pm2.21d 121 . . . 4 (𝜑 → (𝐵 < 𝐴𝐶 < 𝐵))
2316, 22jaod 858 . . 3 (𝜑 → ((𝐶 < 𝐵𝐵 < 𝐴) → 𝐶 < 𝐵))
2415, 23syld 47 . 2 (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
2513swopolem 5618 . . . 4 ((𝜑 ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (𝐶 < 𝐵 → (𝐶 < 𝐴𝐴 < 𝐵)))
261, 2, 12, 11, 25syl13anc 1372 . . 3 (𝜑 → (𝐶 < 𝐵 → (𝐶 < 𝐴𝐴 < 𝐵)))
27 idd 24 . . . 4 (𝜑 → (𝐶 < 𝐴𝐶 < 𝐴))
28 orc 866 . . . . . 6 (𝐴 < 𝐵 → (𝐴 < 𝐵𝐵 < 𝐴))
2919, 28nsyl 140 . . . . 5 (𝜑 → ¬ 𝐴 < 𝐵)
3029pm2.21d 121 . . . 4 (𝜑 → (𝐴 < 𝐵𝐶 < 𝐴))
3127, 30jaod 858 . . 3 (𝜑 → ((𝐶 < 𝐴𝐴 < 𝐵) → 𝐶 < 𝐴))
3226, 31syld 47 . 2 (𝜑 → (𝐶 < 𝐵𝐶 < 𝐴))
3324, 32impbid 212 1 (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  cdif 3973  cun 3974  cop 4654   class class class wbr 5166   × cxp 5698  ccnv 5699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator