MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reperflem Structured version   Visualization version   GIF version

Theorem reperflem 23129
Description: A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypotheses
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
reperflem.2 ((𝑢𝑆𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆)
reperflem.3 𝑆 ⊆ ℂ
Assertion
Ref Expression
reperflem (𝐽t 𝑆) ∈ Perf
Distinct variable groups:   𝑢,𝐽   𝑣,𝑢,𝑆
Allowed substitution hint:   𝐽(𝑣)

Proof of Theorem reperflem
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnxmet 23084 . . . . . . 7 (abs ∘ − ) ∈ (∞Met‘ℂ)
2 reperflem.3 . . . . . . . 8 𝑆 ⊆ ℂ
32sseli 3854 . . . . . . 7 (𝑢𝑆𝑢 ∈ ℂ)
4 recld2.1 . . . . . . . . 9 𝐽 = (TopOpen‘ℂfld)
54cnfldtopn 23093 . . . . . . . 8 𝐽 = (MetOpen‘(abs ∘ − ))
65neibl 22814 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑢 ∈ ℂ) → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛)))
71, 3, 6sylancr 578 . . . . . 6 (𝑢𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛)))
8 ssrin 4097 . . . . . . . . 9 ((𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})))
9 reperflem.2 . . . . . . . . . . . . . . . . 17 ((𝑢𝑆𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆)
109ralrimiva 3132 . . . . . . . . . . . . . . . 16 (𝑢𝑆 → ∀𝑣 ∈ ℝ (𝑢 + 𝑣) ∈ 𝑆)
11 rpre 12212 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
1211rehalfcld 11694 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ)
13 oveq2 6984 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑟 / 2) → (𝑢 + 𝑣) = (𝑢 + (𝑟 / 2)))
1413eleq1d 2850 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑟 / 2) → ((𝑢 + 𝑣) ∈ 𝑆 ↔ (𝑢 + (𝑟 / 2)) ∈ 𝑆))
1514rspccva 3534 . . . . . . . . . . . . . . . 16 ((∀𝑣 ∈ ℝ (𝑢 + 𝑣) ∈ 𝑆 ∧ (𝑟 / 2) ∈ ℝ) → (𝑢 + (𝑟 / 2)) ∈ 𝑆)
1610, 12, 15syl2an 586 . . . . . . . . . . . . . . 15 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ 𝑆)
172, 16sseldi 3856 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ ℂ)
183adantr 473 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑢 ∈ ℂ)
19 eqid 2778 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
2019cnmetdval 23082 . . . . . . . . . . . . . 14 (((𝑢 + (𝑟 / 2)) ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)))
2117, 18, 20syl2anc 576 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)))
22 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
2322rphalfcld 12260 . . . . . . . . . . . . . . . 16 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
2423rpcnd 12250 . . . . . . . . . . . . . . 15 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℂ)
2518, 24pncan2d 10800 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) − 𝑢) = (𝑟 / 2))
2625fveq2d 6503 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)) = (abs‘(𝑟 / 2)))
2723rpred 12248 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ)
2823rpge0d 12252 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → 0 ≤ (𝑟 / 2))
2927, 28absidd 14643 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs‘(𝑟 / 2)) = (𝑟 / 2))
3021, 26, 293eqtrd 2818 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (𝑟 / 2))
31 rphalflt 12235 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
3231adantl 474 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) < 𝑟)
3330, 32eqbrtrd 4951 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟)
341a1i 11 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
35 rpxr 12215 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
3635adantl 474 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
37 elbl3 22705 . . . . . . . . . . . 12 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑢 ∈ ℂ ∧ (𝑢 + (𝑟 / 2)) ∈ ℂ)) → ((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ↔ ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟))
3834, 36, 18, 17, 37syl22anc 826 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ↔ ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟))
3933, 38mpbird 249 . . . . . . . . . 10 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟))
4023rpne0d 12253 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ≠ 0)
4125, 40eqnetrd 3034 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) − 𝑢) ≠ 0)
4217, 18, 41subne0ad 10809 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ≠ 𝑢)
43 eldifsn 4593 . . . . . . . . . . 11 ((𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢}) ↔ ((𝑢 + (𝑟 / 2)) ∈ 𝑆 ∧ (𝑢 + (𝑟 / 2)) ≠ 𝑢))
4416, 42, 43sylanbrc 575 . . . . . . . . . 10 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢}))
45 inelcm 4297 . . . . . . . . . 10 (((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ∧ (𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢})) → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
4639, 44, 45syl2anc 576 . . . . . . . . 9 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
47 ssn0 4240 . . . . . . . . . 10 ((((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})) ∧ ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
4847ex 405 . . . . . . . . 9 (((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})) → (((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅ → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
498, 46, 48syl2imc 41 . . . . . . . 8 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5049rexlimdva 3229 . . . . . . 7 (𝑢𝑆 → (∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5150adantld 483 . . . . . 6 (𝑢𝑆 → ((𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
527, 51sylbid 232 . . . . 5 (𝑢𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5352ralrimiv 3131 . . . 4 (𝑢𝑆 → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
544cnfldtop 23095 . . . . 5 𝐽 ∈ Top
554cnfldtopon 23094 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
5655toponunii 21228 . . . . . 6 ℂ = 𝐽
5756islp2 21457 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 ⊆ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5854, 2, 3, 57mp3an12i 1444 . . . 4 (𝑢𝑆 → (𝑢 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5953, 58mpbird 249 . . 3 (𝑢𝑆𝑢 ∈ ((limPt‘𝐽)‘𝑆))
6059ssriv 3862 . 2 𝑆 ⊆ ((limPt‘𝐽)‘𝑆)
61 eqid 2778 . . . 4 (𝐽t 𝑆) = (𝐽t 𝑆)
6256, 61restperf 21496 . . 3 ((𝐽 ∈ Top ∧ 𝑆 ⊆ ℂ) → ((𝐽t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆)))
6354, 2, 62mp2an 679 . 2 ((𝐽t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆))
6460, 63mpbir 223 1 (𝐽t 𝑆) ∈ Perf
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2967  wral 3088  wrex 3089  cdif 3826  cin 3828  wss 3829  c0 4178  {csn 4441   class class class wbr 4929  ccom 5411  cfv 6188  (class class class)co 6976  cc 10333  cr 10334  0cc0 10335   + caddc 10338  *cxr 10473   < clt 10474  cmin 10670   / cdiv 11098  2c2 11495  +crp 12204  abscabs 14454  t crest 16550  TopOpenctopn 16551  ∞Metcxmet 20232  ballcbl 20234  fldccnfld 20247  Topctop 21205  neicnei 21409  limPtclp 21446  Perfcperf 21447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fi 8670  df-sup 8701  df-inf 8702  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-fz 12709  df-seq 13185  df-exp 13245  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-plusg 16434  df-mulr 16435  df-starv 16436  df-tset 16440  df-ple 16441  df-ds 16443  df-unif 16444  df-rest 16552  df-topn 16553  df-topgen 16573  df-psmet 20239  df-xmet 20240  df-met 20241  df-bl 20242  df-mopn 20243  df-cnfld 20248  df-top 21206  df-topon 21223  df-topsp 21245  df-bases 21258  df-cld 21331  df-ntr 21332  df-cls 21333  df-nei 21410  df-lp 21448  df-perf 21449  df-xms 22633  df-ms 22634
This theorem is referenced by:  reperf  23130  cnperf  23131
  Copyright terms: Public domain W3C validator