MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reperflem Structured version   Visualization version   GIF version

Theorem reperflem 24714
Description: A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypotheses
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
reperflem.2 ((𝑢𝑆𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆)
reperflem.3 𝑆 ⊆ ℂ
Assertion
Ref Expression
reperflem (𝐽t 𝑆) ∈ Perf
Distinct variable groups:   𝑢,𝐽   𝑣,𝑢,𝑆
Allowed substitution hint:   𝐽(𝑣)

Proof of Theorem reperflem
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnxmet 24667 . . . . . . 7 (abs ∘ − ) ∈ (∞Met‘ℂ)
2 reperflem.3 . . . . . . . 8 𝑆 ⊆ ℂ
32sseli 3945 . . . . . . 7 (𝑢𝑆𝑢 ∈ ℂ)
4 recld2.1 . . . . . . . . 9 𝐽 = (TopOpen‘ℂfld)
54cnfldtopn 24676 . . . . . . . 8 𝐽 = (MetOpen‘(abs ∘ − ))
65neibl 24396 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑢 ∈ ℂ) → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛)))
71, 3, 6sylancr 587 . . . . . 6 (𝑢𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛)))
8 ssrin 4208 . . . . . . . . 9 ((𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})))
9 reperflem.2 . . . . . . . . . . . . . . . . 17 ((𝑢𝑆𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆)
109ralrimiva 3126 . . . . . . . . . . . . . . . 16 (𝑢𝑆 → ∀𝑣 ∈ ℝ (𝑢 + 𝑣) ∈ 𝑆)
11 rpre 12967 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
1211rehalfcld 12436 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ)
13 oveq2 7398 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑟 / 2) → (𝑢 + 𝑣) = (𝑢 + (𝑟 / 2)))
1413eleq1d 2814 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑟 / 2) → ((𝑢 + 𝑣) ∈ 𝑆 ↔ (𝑢 + (𝑟 / 2)) ∈ 𝑆))
1514rspccva 3590 . . . . . . . . . . . . . . . 16 ((∀𝑣 ∈ ℝ (𝑢 + 𝑣) ∈ 𝑆 ∧ (𝑟 / 2) ∈ ℝ) → (𝑢 + (𝑟 / 2)) ∈ 𝑆)
1610, 12, 15syl2an 596 . . . . . . . . . . . . . . 15 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ 𝑆)
172, 16sselid 3947 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ ℂ)
183adantr 480 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑢 ∈ ℂ)
19 eqid 2730 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
2019cnmetdval 24665 . . . . . . . . . . . . . 14 (((𝑢 + (𝑟 / 2)) ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)))
2117, 18, 20syl2anc 584 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)))
22 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
2322rphalfcld 13014 . . . . . . . . . . . . . . . 16 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
2423rpcnd 13004 . . . . . . . . . . . . . . 15 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℂ)
2518, 24pncan2d 11542 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) − 𝑢) = (𝑟 / 2))
2625fveq2d 6865 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)) = (abs‘(𝑟 / 2)))
2723rpred 13002 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ)
2823rpge0d 13006 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → 0 ≤ (𝑟 / 2))
2927, 28absidd 15396 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs‘(𝑟 / 2)) = (𝑟 / 2))
3021, 26, 293eqtrd 2769 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (𝑟 / 2))
31 rphalflt 12989 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
3231adantl 481 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) < 𝑟)
3330, 32eqbrtrd 5132 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟)
341a1i 11 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
35 rpxr 12968 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
3635adantl 481 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
37 elbl3 24287 . . . . . . . . . . . 12 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑢 ∈ ℂ ∧ (𝑢 + (𝑟 / 2)) ∈ ℂ)) → ((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ↔ ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟))
3834, 36, 18, 17, 37syl22anc 838 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ↔ ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟))
3933, 38mpbird 257 . . . . . . . . . 10 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟))
4023rpne0d 13007 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ≠ 0)
4125, 40eqnetrd 2993 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) − 𝑢) ≠ 0)
4217, 18, 41subne0ad 11551 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ≠ 𝑢)
43 eldifsn 4753 . . . . . . . . . . 11 ((𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢}) ↔ ((𝑢 + (𝑟 / 2)) ∈ 𝑆 ∧ (𝑢 + (𝑟 / 2)) ≠ 𝑢))
4416, 42, 43sylanbrc 583 . . . . . . . . . 10 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢}))
45 inelcm 4431 . . . . . . . . . 10 (((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ∧ (𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢})) → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
4639, 44, 45syl2anc 584 . . . . . . . . 9 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
47 ssn0 4370 . . . . . . . . . 10 ((((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})) ∧ ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
4847ex 412 . . . . . . . . 9 (((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})) → (((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅ → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
498, 46, 48syl2imc 41 . . . . . . . 8 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5049rexlimdva 3135 . . . . . . 7 (𝑢𝑆 → (∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5150adantld 490 . . . . . 6 (𝑢𝑆 → ((𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
527, 51sylbid 240 . . . . 5 (𝑢𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5352ralrimiv 3125 . . . 4 (𝑢𝑆 → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
544cnfldtop 24678 . . . . 5 𝐽 ∈ Top
554cnfldtopon 24677 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
5655toponunii 22810 . . . . . 6 ℂ = 𝐽
5756islp2 23039 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 ⊆ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5854, 2, 3, 57mp3an12i 1467 . . . 4 (𝑢𝑆 → (𝑢 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5953, 58mpbird 257 . . 3 (𝑢𝑆𝑢 ∈ ((limPt‘𝐽)‘𝑆))
6059ssriv 3953 . 2 𝑆 ⊆ ((limPt‘𝐽)‘𝑆)
61 eqid 2730 . . . 4 (𝐽t 𝑆) = (𝐽t 𝑆)
6256, 61restperf 23078 . . 3 ((𝐽 ∈ Top ∧ 𝑆 ⊆ ℂ) → ((𝐽t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆)))
6354, 2, 62mp2an 692 . 2 ((𝐽t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆))
6460, 63mpbir 231 1 (𝐽t 𝑆) ∈ Perf
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  cin 3916  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  ccom 5645  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   + caddc 11078  *cxr 11214   < clt 11215  cmin 11412   / cdiv 11842  2c2 12248  +crp 12958  abscabs 15207  t crest 17390  TopOpenctopn 17391  ∞Metcxmet 21256  ballcbl 21258  fldccnfld 21271  Topctop 22787  neicnei 22991  limPtclp 23028  Perfcperf 23029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-xms 24215  df-ms 24216
This theorem is referenced by:  reperf  24715  cnperf  24716
  Copyright terms: Public domain W3C validator