MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reperflem Structured version   Visualization version   GIF version

Theorem reperflem 23687
Description: A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypotheses
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
reperflem.2 ((𝑢𝑆𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆)
reperflem.3 𝑆 ⊆ ℂ
Assertion
Ref Expression
reperflem (𝐽t 𝑆) ∈ Perf
Distinct variable groups:   𝑢,𝐽   𝑣,𝑢,𝑆
Allowed substitution hint:   𝐽(𝑣)

Proof of Theorem reperflem
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnxmet 23642 . . . . . . 7 (abs ∘ − ) ∈ (∞Met‘ℂ)
2 reperflem.3 . . . . . . . 8 𝑆 ⊆ ℂ
32sseli 3887 . . . . . . 7 (𝑢𝑆𝑢 ∈ ℂ)
4 recld2.1 . . . . . . . . 9 𝐽 = (TopOpen‘ℂfld)
54cnfldtopn 23651 . . . . . . . 8 𝐽 = (MetOpen‘(abs ∘ − ))
65neibl 23371 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑢 ∈ ℂ) → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛)))
71, 3, 6sylancr 590 . . . . . 6 (𝑢𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛)))
8 ssrin 4138 . . . . . . . . 9 ((𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})))
9 reperflem.2 . . . . . . . . . . . . . . . . 17 ((𝑢𝑆𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆)
109ralrimiva 3098 . . . . . . . . . . . . . . . 16 (𝑢𝑆 → ∀𝑣 ∈ ℝ (𝑢 + 𝑣) ∈ 𝑆)
11 rpre 12577 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
1211rehalfcld 12060 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ)
13 oveq2 7210 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑟 / 2) → (𝑢 + 𝑣) = (𝑢 + (𝑟 / 2)))
1413eleq1d 2818 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑟 / 2) → ((𝑢 + 𝑣) ∈ 𝑆 ↔ (𝑢 + (𝑟 / 2)) ∈ 𝑆))
1514rspccva 3529 . . . . . . . . . . . . . . . 16 ((∀𝑣 ∈ ℝ (𝑢 + 𝑣) ∈ 𝑆 ∧ (𝑟 / 2) ∈ ℝ) → (𝑢 + (𝑟 / 2)) ∈ 𝑆)
1610, 12, 15syl2an 599 . . . . . . . . . . . . . . 15 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ 𝑆)
172, 16sseldi 3889 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ ℂ)
183adantr 484 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑢 ∈ ℂ)
19 eqid 2734 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
2019cnmetdval 23640 . . . . . . . . . . . . . 14 (((𝑢 + (𝑟 / 2)) ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)))
2117, 18, 20syl2anc 587 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)))
22 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
2322rphalfcld 12623 . . . . . . . . . . . . . . . 16 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
2423rpcnd 12613 . . . . . . . . . . . . . . 15 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℂ)
2518, 24pncan2d 11174 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) − 𝑢) = (𝑟 / 2))
2625fveq2d 6710 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)) = (abs‘(𝑟 / 2)))
2723rpred 12611 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ)
2823rpge0d 12615 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → 0 ≤ (𝑟 / 2))
2927, 28absidd 14969 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs‘(𝑟 / 2)) = (𝑟 / 2))
3021, 26, 293eqtrd 2778 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (𝑟 / 2))
31 rphalflt 12598 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
3231adantl 485 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) < 𝑟)
3330, 32eqbrtrd 5065 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟)
341a1i 11 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
35 rpxr 12578 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
3635adantl 485 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
37 elbl3 23262 . . . . . . . . . . . 12 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑢 ∈ ℂ ∧ (𝑢 + (𝑟 / 2)) ∈ ℂ)) → ((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ↔ ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟))
3834, 36, 18, 17, 37syl22anc 839 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ↔ ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟))
3933, 38mpbird 260 . . . . . . . . . 10 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟))
4023rpne0d 12616 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ≠ 0)
4125, 40eqnetrd 3002 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) − 𝑢) ≠ 0)
4217, 18, 41subne0ad 11183 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ≠ 𝑢)
43 eldifsn 4690 . . . . . . . . . . 11 ((𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢}) ↔ ((𝑢 + (𝑟 / 2)) ∈ 𝑆 ∧ (𝑢 + (𝑟 / 2)) ≠ 𝑢))
4416, 42, 43sylanbrc 586 . . . . . . . . . 10 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢}))
45 inelcm 4369 . . . . . . . . . 10 (((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ∧ (𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢})) → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
4639, 44, 45syl2anc 587 . . . . . . . . 9 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
47 ssn0 4305 . . . . . . . . . 10 ((((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})) ∧ ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
4847ex 416 . . . . . . . . 9 (((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})) → (((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅ → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
498, 46, 48syl2imc 41 . . . . . . . 8 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5049rexlimdva 3196 . . . . . . 7 (𝑢𝑆 → (∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5150adantld 494 . . . . . 6 (𝑢𝑆 → ((𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
527, 51sylbid 243 . . . . 5 (𝑢𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5352ralrimiv 3097 . . . 4 (𝑢𝑆 → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
544cnfldtop 23653 . . . . 5 𝐽 ∈ Top
554cnfldtopon 23652 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
5655toponunii 21785 . . . . . 6 ℂ = 𝐽
5756islp2 22014 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 ⊆ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5854, 2, 3, 57mp3an12i 1467 . . . 4 (𝑢𝑆 → (𝑢 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5953, 58mpbird 260 . . 3 (𝑢𝑆𝑢 ∈ ((limPt‘𝐽)‘𝑆))
6059ssriv 3895 . 2 𝑆 ⊆ ((limPt‘𝐽)‘𝑆)
61 eqid 2734 . . . 4 (𝐽t 𝑆) = (𝐽t 𝑆)
6256, 61restperf 22053 . . 3 ((𝐽 ∈ Top ∧ 𝑆 ⊆ ℂ) → ((𝐽t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆)))
6354, 2, 62mp2an 692 . 2 ((𝐽t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆))
6460, 63mpbir 234 1 (𝐽t 𝑆) ∈ Perf
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2935  wral 3054  wrex 3055  cdif 3854  cin 3856  wss 3857  c0 4227  {csn 4531   class class class wbr 5043  ccom 5544  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712   + caddc 10715  *cxr 10849   < clt 10850  cmin 11045   / cdiv 11472  2c2 11868  +crp 12569  abscabs 14780  t crest 16897  TopOpenctopn 16898  ∞Metcxmet 20320  ballcbl 20322  fldccnfld 20335  Topctop 21762  neicnei 21966  limPtclp 22003  Perfcperf 22004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fi 9016  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-fz 13079  df-seq 13558  df-exp 13619  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-plusg 16780  df-mulr 16781  df-starv 16782  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-rest 16899  df-topn 16900  df-topgen 16920  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-cnfld 20336  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-cld 21888  df-ntr 21889  df-cls 21890  df-nei 21967  df-lp 22005  df-perf 22006  df-xms 23190  df-ms 23191
This theorem is referenced by:  reperf  23688  cnperf  23689
  Copyright terms: Public domain W3C validator