MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reperflem Structured version   Visualization version   GIF version

Theorem reperflem 23427
Description: A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypotheses
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
reperflem.2 ((𝑢𝑆𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆)
reperflem.3 𝑆 ⊆ ℂ
Assertion
Ref Expression
reperflem (𝐽t 𝑆) ∈ Perf
Distinct variable groups:   𝑢,𝐽   𝑣,𝑢,𝑆
Allowed substitution hint:   𝐽(𝑣)

Proof of Theorem reperflem
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnxmet 23382 . . . . . . 7 (abs ∘ − ) ∈ (∞Met‘ℂ)
2 reperflem.3 . . . . . . . 8 𝑆 ⊆ ℂ
32sseli 3914 . . . . . . 7 (𝑢𝑆𝑢 ∈ ℂ)
4 recld2.1 . . . . . . . . 9 𝐽 = (TopOpen‘ℂfld)
54cnfldtopn 23391 . . . . . . . 8 𝐽 = (MetOpen‘(abs ∘ − ))
65neibl 23112 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑢 ∈ ℂ) → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛)))
71, 3, 6sylancr 590 . . . . . 6 (𝑢𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛)))
8 ssrin 4163 . . . . . . . . 9 ((𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})))
9 reperflem.2 . . . . . . . . . . . . . . . . 17 ((𝑢𝑆𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆)
109ralrimiva 3152 . . . . . . . . . . . . . . . 16 (𝑢𝑆 → ∀𝑣 ∈ ℝ (𝑢 + 𝑣) ∈ 𝑆)
11 rpre 12389 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
1211rehalfcld 11876 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ)
13 oveq2 7147 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑟 / 2) → (𝑢 + 𝑣) = (𝑢 + (𝑟 / 2)))
1413eleq1d 2877 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑟 / 2) → ((𝑢 + 𝑣) ∈ 𝑆 ↔ (𝑢 + (𝑟 / 2)) ∈ 𝑆))
1514rspccva 3573 . . . . . . . . . . . . . . . 16 ((∀𝑣 ∈ ℝ (𝑢 + 𝑣) ∈ 𝑆 ∧ (𝑟 / 2) ∈ ℝ) → (𝑢 + (𝑟 / 2)) ∈ 𝑆)
1610, 12, 15syl2an 598 . . . . . . . . . . . . . . 15 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ 𝑆)
172, 16sseldi 3916 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ ℂ)
183adantr 484 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑢 ∈ ℂ)
19 eqid 2801 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
2019cnmetdval 23380 . . . . . . . . . . . . . 14 (((𝑢 + (𝑟 / 2)) ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)))
2117, 18, 20syl2anc 587 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)))
22 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
2322rphalfcld 12435 . . . . . . . . . . . . . . . 16 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
2423rpcnd 12425 . . . . . . . . . . . . . . 15 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℂ)
2518, 24pncan2d 10992 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) − 𝑢) = (𝑟 / 2))
2625fveq2d 6653 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)) = (abs‘(𝑟 / 2)))
2723rpred 12423 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ)
2823rpge0d 12427 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → 0 ≤ (𝑟 / 2))
2927, 28absidd 14778 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs‘(𝑟 / 2)) = (𝑟 / 2))
3021, 26, 293eqtrd 2840 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (𝑟 / 2))
31 rphalflt 12410 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
3231adantl 485 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) < 𝑟)
3330, 32eqbrtrd 5055 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟)
341a1i 11 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
35 rpxr 12390 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
3635adantl 485 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
37 elbl3 23003 . . . . . . . . . . . 12 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑢 ∈ ℂ ∧ (𝑢 + (𝑟 / 2)) ∈ ℂ)) → ((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ↔ ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟))
3834, 36, 18, 17, 37syl22anc 837 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ↔ ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟))
3933, 38mpbird 260 . . . . . . . . . 10 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟))
4023rpne0d 12428 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ≠ 0)
4125, 40eqnetrd 3057 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) − 𝑢) ≠ 0)
4217, 18, 41subne0ad 11001 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ≠ 𝑢)
43 eldifsn 4683 . . . . . . . . . . 11 ((𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢}) ↔ ((𝑢 + (𝑟 / 2)) ∈ 𝑆 ∧ (𝑢 + (𝑟 / 2)) ≠ 𝑢))
4416, 42, 43sylanbrc 586 . . . . . . . . . 10 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢}))
45 inelcm 4375 . . . . . . . . . 10 (((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ∧ (𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢})) → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
4639, 44, 45syl2anc 587 . . . . . . . . 9 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
47 ssn0 4311 . . . . . . . . . 10 ((((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})) ∧ ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
4847ex 416 . . . . . . . . 9 (((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})) → (((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅ → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
498, 46, 48syl2imc 41 . . . . . . . 8 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5049rexlimdva 3246 . . . . . . 7 (𝑢𝑆 → (∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5150adantld 494 . . . . . 6 (𝑢𝑆 → ((𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
527, 51sylbid 243 . . . . 5 (𝑢𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5352ralrimiv 3151 . . . 4 (𝑢𝑆 → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
544cnfldtop 23393 . . . . 5 𝐽 ∈ Top
554cnfldtopon 23392 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
5655toponunii 21525 . . . . . 6 ℂ = 𝐽
5756islp2 21754 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 ⊆ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5854, 2, 3, 57mp3an12i 1462 . . . 4 (𝑢𝑆 → (𝑢 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5953, 58mpbird 260 . . 3 (𝑢𝑆𝑢 ∈ ((limPt‘𝐽)‘𝑆))
6059ssriv 3922 . 2 𝑆 ⊆ ((limPt‘𝐽)‘𝑆)
61 eqid 2801 . . . 4 (𝐽t 𝑆) = (𝐽t 𝑆)
6256, 61restperf 21793 . . 3 ((𝐽 ∈ Top ∧ 𝑆 ⊆ ℂ) → ((𝐽t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆)))
6354, 2, 62mp2an 691 . 2 ((𝐽t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆))
6460, 63mpbir 234 1 (𝐽t 𝑆) ∈ Perf
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  cdif 3881  cin 3883  wss 3884  c0 4246  {csn 4528   class class class wbr 5033  ccom 5527  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530   + caddc 10533  *cxr 10667   < clt 10668  cmin 10863   / cdiv 11290  2c2 11684  +crp 12381  abscabs 14589  t crest 16690  TopOpenctopn 16691  ∞Metcxmet 20080  ballcbl 20082  fldccnfld 20095  Topctop 21502  neicnei 21706  limPtclp 21743  Perfcperf 21744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-fz 12890  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-plusg 16574  df-mulr 16575  df-starv 16576  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-rest 16692  df-topn 16693  df-topgen 16713  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-xms 22931  df-ms 22932
This theorem is referenced by:  reperf  23428  cnperf  23429
  Copyright terms: Public domain W3C validator