MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reperflem Structured version   Visualization version   GIF version

Theorem reperflem 24854
Description: A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypotheses
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
reperflem.2 ((𝑢𝑆𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆)
reperflem.3 𝑆 ⊆ ℂ
Assertion
Ref Expression
reperflem (𝐽t 𝑆) ∈ Perf
Distinct variable groups:   𝑢,𝐽   𝑣,𝑢,𝑆
Allowed substitution hint:   𝐽(𝑣)

Proof of Theorem reperflem
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnxmet 24809 . . . . . . 7 (abs ∘ − ) ∈ (∞Met‘ℂ)
2 reperflem.3 . . . . . . . 8 𝑆 ⊆ ℂ
32sseli 3991 . . . . . . 7 (𝑢𝑆𝑢 ∈ ℂ)
4 recld2.1 . . . . . . . . 9 𝐽 = (TopOpen‘ℂfld)
54cnfldtopn 24818 . . . . . . . 8 𝐽 = (MetOpen‘(abs ∘ − ))
65neibl 24530 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑢 ∈ ℂ) → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛)))
71, 3, 6sylancr 587 . . . . . 6 (𝑢𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛)))
8 ssrin 4250 . . . . . . . . 9 ((𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})))
9 reperflem.2 . . . . . . . . . . . . . . . . 17 ((𝑢𝑆𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆)
109ralrimiva 3144 . . . . . . . . . . . . . . . 16 (𝑢𝑆 → ∀𝑣 ∈ ℝ (𝑢 + 𝑣) ∈ 𝑆)
11 rpre 13041 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
1211rehalfcld 12511 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ)
13 oveq2 7439 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑟 / 2) → (𝑢 + 𝑣) = (𝑢 + (𝑟 / 2)))
1413eleq1d 2824 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑟 / 2) → ((𝑢 + 𝑣) ∈ 𝑆 ↔ (𝑢 + (𝑟 / 2)) ∈ 𝑆))
1514rspccva 3621 . . . . . . . . . . . . . . . 16 ((∀𝑣 ∈ ℝ (𝑢 + 𝑣) ∈ 𝑆 ∧ (𝑟 / 2) ∈ ℝ) → (𝑢 + (𝑟 / 2)) ∈ 𝑆)
1610, 12, 15syl2an 596 . . . . . . . . . . . . . . 15 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ 𝑆)
172, 16sselid 3993 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ ℂ)
183adantr 480 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑢 ∈ ℂ)
19 eqid 2735 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
2019cnmetdval 24807 . . . . . . . . . . . . . 14 (((𝑢 + (𝑟 / 2)) ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)))
2117, 18, 20syl2anc 584 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)))
22 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
2322rphalfcld 13087 . . . . . . . . . . . . . . . 16 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
2423rpcnd 13077 . . . . . . . . . . . . . . 15 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℂ)
2518, 24pncan2d 11620 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) − 𝑢) = (𝑟 / 2))
2625fveq2d 6911 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs‘((𝑢 + (𝑟 / 2)) − 𝑢)) = (abs‘(𝑟 / 2)))
2723rpred 13075 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ)
2823rpge0d 13079 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑟 ∈ ℝ+) → 0 ≤ (𝑟 / 2))
2927, 28absidd 15458 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs‘(𝑟 / 2)) = (𝑟 / 2))
3021, 26, 293eqtrd 2779 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (𝑟 / 2))
31 rphalflt 13062 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
3231adantl 481 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) < 𝑟)
3330, 32eqbrtrd 5170 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟)
341a1i 11 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
35 rpxr 13042 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
3635adantl 481 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
37 elbl3 24418 . . . . . . . . . . . 12 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑢 ∈ ℂ ∧ (𝑢 + (𝑟 / 2)) ∈ ℂ)) → ((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ↔ ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟))
3834, 36, 18, 17, 37syl22anc 839 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ↔ ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟))
3933, 38mpbird 257 . . . . . . . . . 10 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟))
4023rpne0d 13080 . . . . . . . . . . . . 13 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑟 / 2) ≠ 0)
4125, 40eqnetrd 3006 . . . . . . . . . . . 12 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) − 𝑢) ≠ 0)
4217, 18, 41subne0ad 11629 . . . . . . . . . . 11 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ≠ 𝑢)
43 eldifsn 4791 . . . . . . . . . . 11 ((𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢}) ↔ ((𝑢 + (𝑟 / 2)) ∈ 𝑆 ∧ (𝑢 + (𝑟 / 2)) ≠ 𝑢))
4416, 42, 43sylanbrc 583 . . . . . . . . . 10 ((𝑢𝑆𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢}))
45 inelcm 4471 . . . . . . . . . 10 (((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ∧ (𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢})) → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
4639, 44, 45syl2anc 584 . . . . . . . . 9 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
47 ssn0 4410 . . . . . . . . . 10 ((((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})) ∧ ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
4847ex 412 . . . . . . . . 9 (((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})) → (((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅ → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
498, 46, 48syl2imc 41 . . . . . . . 8 ((𝑢𝑆𝑟 ∈ ℝ+) → ((𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5049rexlimdva 3153 . . . . . . 7 (𝑢𝑆 → (∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5150adantld 490 . . . . . 6 (𝑢𝑆 → ((𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ − ))𝑟) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
527, 51sylbid 240 . . . . 5 (𝑢𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5352ralrimiv 3143 . . . 4 (𝑢𝑆 → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)
544cnfldtop 24820 . . . . 5 𝐽 ∈ Top
554cnfldtopon 24819 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
5655toponunii 22938 . . . . . 6 ℂ = 𝐽
5756islp2 23169 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 ⊆ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5854, 2, 3, 57mp3an12i 1464 . . . 4 (𝑢𝑆 → (𝑢 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅))
5953, 58mpbird 257 . . 3 (𝑢𝑆𝑢 ∈ ((limPt‘𝐽)‘𝑆))
6059ssriv 3999 . 2 𝑆 ⊆ ((limPt‘𝐽)‘𝑆)
61 eqid 2735 . . . 4 (𝐽t 𝑆) = (𝐽t 𝑆)
6256, 61restperf 23208 . . 3 ((𝐽 ∈ Top ∧ 𝑆 ⊆ ℂ) → ((𝐽t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆)))
6354, 2, 62mp2an 692 . 2 ((𝐽t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆))
6460, 63mpbir 231 1 (𝐽t 𝑆) ∈ Perf
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  cdif 3960  cin 3962  wss 3963  c0 4339  {csn 4631   class class class wbr 5148  ccom 5693  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153   + caddc 11156  *cxr 11292   < clt 11293  cmin 11490   / cdiv 11918  2c2 12319  +crp 13032  abscabs 15270  t crest 17467  TopOpenctopn 17468  ∞Metcxmet 21367  ballcbl 21369  fldccnfld 21382  Topctop 22915  neicnei 23121  limPtclp 23158  Perfcperf 23159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17469  df-topn 17470  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-xms 24346  df-ms 24347
This theorem is referenced by:  reperf  24855  cnperf  24856
  Copyright terms: Public domain W3C validator