Step | Hyp | Ref
| Expression |
1 | | cnxmet 23936 |
. . . . . . 7
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
2 | | reperflem.3 |
. . . . . . . 8
⊢ 𝑆 ⊆
ℂ |
3 | 2 | sseli 3917 |
. . . . . . 7
⊢ (𝑢 ∈ 𝑆 → 𝑢 ∈ ℂ) |
4 | | recld2.1 |
. . . . . . . . 9
⊢ 𝐽 =
(TopOpen‘ℂfld) |
5 | 4 | cnfldtopn 23945 |
. . . . . . . 8
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) |
6 | 5 | neibl 23657 |
. . . . . . 7
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑢 ∈ ℂ) → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+
(𝑢(ball‘(abs ∘
− ))𝑟) ⊆ 𝑛))) |
7 | 1, 3, 6 | sylancr 587 |
. . . . . 6
⊢ (𝑢 ∈ 𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) ↔ (𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+
(𝑢(ball‘(abs ∘
− ))𝑟) ⊆ 𝑛))) |
8 | | ssrin 4167 |
. . . . . . . . 9
⊢ ((𝑢(ball‘(abs ∘ −
))𝑟) ⊆ 𝑛 → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢}))) |
9 | | reperflem.2 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆) |
10 | 9 | ralrimiva 3103 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ 𝑆 → ∀𝑣 ∈ ℝ (𝑢 + 𝑣) ∈ 𝑆) |
11 | | rpre 12738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ) |
12 | 11 | rehalfcld 12220 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ ℝ+
→ (𝑟 / 2) ∈
ℝ) |
13 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = (𝑟 / 2) → (𝑢 + 𝑣) = (𝑢 + (𝑟 / 2))) |
14 | 13 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (𝑟 / 2) → ((𝑢 + 𝑣) ∈ 𝑆 ↔ (𝑢 + (𝑟 / 2)) ∈ 𝑆)) |
15 | 14 | rspccva 3560 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑣 ∈
ℝ (𝑢 + 𝑣) ∈ 𝑆 ∧ (𝑟 / 2) ∈ ℝ) → (𝑢 + (𝑟 / 2)) ∈ 𝑆) |
16 | 10, 12, 15 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ 𝑆) |
17 | 2, 16 | sselid 3919 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ ℂ) |
18 | 3 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → 𝑢 ∈
ℂ) |
19 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (abs
∘ − ) = (abs ∘ − ) |
20 | 19 | cnmetdval 23934 |
. . . . . . . . . . . . . 14
⊢ (((𝑢 + (𝑟 / 2)) ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (abs‘((𝑢 + (𝑟 / 2)) − 𝑢))) |
21 | 17, 18, 20 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (abs‘((𝑢 + (𝑟 / 2)) − 𝑢))) |
22 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ+) |
23 | 22 | rphalfcld 12784 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈
ℝ+) |
24 | 23 | rpcnd 12774 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈
ℂ) |
25 | 18, 24 | pncan2d 11334 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) − 𝑢) = (𝑟 / 2)) |
26 | 25 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) →
(abs‘((𝑢 + (𝑟 / 2)) − 𝑢)) = (abs‘(𝑟 / 2))) |
27 | 23 | rpred 12772 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈
ℝ) |
28 | 23 | rpge0d 12776 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → 0 ≤
(𝑟 / 2)) |
29 | 27, 28 | absidd 15134 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) →
(abs‘(𝑟 / 2)) =
(𝑟 / 2)) |
30 | 21, 26, 29 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) = (𝑟 / 2)) |
31 | | rphalflt 12759 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ ℝ+
→ (𝑟 / 2) < 𝑟) |
32 | 31 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) < 𝑟) |
33 | 30, 32 | eqbrtrd 5096 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟) |
34 | 1 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → (abs
∘ − ) ∈ (∞Met‘ℂ)) |
35 | | rpxr 12739 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
36 | 35 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ*) |
37 | | elbl3 23545 |
. . . . . . . . . . . 12
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑢 ∈ ℂ ∧ (𝑢 + (𝑟 / 2)) ∈ ℂ)) → ((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ↔ ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟)) |
38 | 34, 36, 18, 17, 37 | syl22anc 836 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ↔ ((𝑢 + (𝑟 / 2))(abs ∘ − )𝑢) < 𝑟)) |
39 | 33, 38 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟)) |
40 | 23 | rpne0d 12777 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ≠ 0) |
41 | 25, 40 | eqnetrd 3011 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → ((𝑢 + (𝑟 / 2)) − 𝑢) ≠ 0) |
42 | 17, 18, 41 | subne0ad 11343 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ≠ 𝑢) |
43 | | eldifsn 4720 |
. . . . . . . . . . 11
⊢ ((𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢}) ↔ ((𝑢 + (𝑟 / 2)) ∈ 𝑆 ∧ (𝑢 + (𝑟 / 2)) ≠ 𝑢)) |
44 | 16, 42, 43 | sylanbrc 583 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → (𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢})) |
45 | | inelcm 4398 |
. . . . . . . . . 10
⊢ (((𝑢 + (𝑟 / 2)) ∈ (𝑢(ball‘(abs ∘ − ))𝑟) ∧ (𝑢 + (𝑟 / 2)) ∈ (𝑆 ∖ {𝑢})) → ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅) |
46 | 39, 44, 45 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → ((𝑢(ball‘(abs ∘ −
))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅) |
47 | | ssn0 4334 |
. . . . . . . . . 10
⊢ ((((𝑢(ball‘(abs ∘ −
))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})) ∧ ((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅) |
48 | 47 | ex 413 |
. . . . . . . . 9
⊢ (((𝑢(ball‘(abs ∘ −
))𝑟) ∩ (𝑆 ∖ {𝑢})) ⊆ (𝑛 ∩ (𝑆 ∖ {𝑢})) → (((𝑢(ball‘(abs ∘ − ))𝑟) ∩ (𝑆 ∖ {𝑢})) ≠ ∅ → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)) |
49 | 8, 46, 48 | syl2imc 41 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+) → ((𝑢(ball‘(abs ∘ −
))𝑟) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)) |
50 | 49 | rexlimdva 3213 |
. . . . . . 7
⊢ (𝑢 ∈ 𝑆 → (∃𝑟 ∈ ℝ+ (𝑢(ball‘(abs ∘ −
))𝑟) ⊆ 𝑛 → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)) |
51 | 50 | adantld 491 |
. . . . . 6
⊢ (𝑢 ∈ 𝑆 → ((𝑛 ⊆ ℂ ∧ ∃𝑟 ∈ ℝ+
(𝑢(ball‘(abs ∘
− ))𝑟) ⊆ 𝑛) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)) |
52 | 7, 51 | sylbid 239 |
. . . . 5
⊢ (𝑢 ∈ 𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑢}) → (𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)) |
53 | 52 | ralrimiv 3102 |
. . . 4
⊢ (𝑢 ∈ 𝑆 → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅) |
54 | 4 | cnfldtop 23947 |
. . . . 5
⊢ 𝐽 ∈ Top |
55 | 4 | cnfldtopon 23946 |
. . . . . . 7
⊢ 𝐽 ∈
(TopOn‘ℂ) |
56 | 55 | toponunii 22065 |
. . . . . 6
⊢ ℂ =
∪ 𝐽 |
57 | 56 | islp2 22296 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)) |
58 | 54, 2, 3, 57 | mp3an12i 1464 |
. . . 4
⊢ (𝑢 ∈ 𝑆 → (𝑢 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑢})(𝑛 ∩ (𝑆 ∖ {𝑢})) ≠ ∅)) |
59 | 53, 58 | mpbird 256 |
. . 3
⊢ (𝑢 ∈ 𝑆 → 𝑢 ∈ ((limPt‘𝐽)‘𝑆)) |
60 | 59 | ssriv 3925 |
. 2
⊢ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆) |
61 | | eqid 2738 |
. . . 4
⊢ (𝐽 ↾t 𝑆) = (𝐽 ↾t 𝑆) |
62 | 56, 61 | restperf 22335 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ℂ) → ((𝐽 ↾t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆))) |
63 | 54, 2, 62 | mp2an 689 |
. 2
⊢ ((𝐽 ↾t 𝑆) ∈ Perf ↔ 𝑆 ⊆ ((limPt‘𝐽)‘𝑆)) |
64 | 60, 63 | mpbir 230 |
1
⊢ (𝐽 ↾t 𝑆) ∈ Perf |