Step | Hyp | Ref
| Expression |
1 | | simp2 1135 |
. . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑀 ∈ LMod) |
2 | 1 | 3ad2ant1 1131 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝑀 ∈ LMod) |
3 | | simp1 1134 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆)) |
4 | | 3simpa 1146 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) → (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) |
5 | 4 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) |
6 | 3, 5 | jca 511 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈))) |
7 | | eldifi 4057 |
. . . . . . 7
⊢ (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠 ∈ 𝑆) |
8 | | lincresunit.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑀) |
9 | | lincresunit.r |
. . . . . . . 8
⊢ 𝑅 = (Scalar‘𝑀) |
10 | | lincresunit.e |
. . . . . . . 8
⊢ 𝐸 = (Base‘𝑅) |
11 | | lincresunit.u |
. . . . . . . 8
⊢ 𝑈 = (Unit‘𝑅) |
12 | | lincresunit.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑅) |
13 | | lincresunit.z |
. . . . . . . 8
⊢ 𝑍 = (0g‘𝑀) |
14 | | lincresunit.n |
. . . . . . . 8
⊢ 𝑁 = (invg‘𝑅) |
15 | | lincresunit.i |
. . . . . . . 8
⊢ 𝐼 = (invr‘𝑅) |
16 | | lincresunit.t |
. . . . . . . 8
⊢ · =
(.r‘𝑅) |
17 | | lincresunit.g |
. . . . . . . 8
⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) |
18 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | lincresunitlem2 45705 |
. . . . . . 7
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑠 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) ∈ 𝐸) |
19 | 6, 7, 18 | syl2an 595 |
. . . . . 6
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) ∈ 𝐸) |
20 | 9 | fveq2i 6759 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘(Scalar‘𝑀)) |
21 | 10, 20 | eqtri 2766 |
. . . . . 6
⊢ 𝐸 =
(Base‘(Scalar‘𝑀)) |
22 | 19, 21 | eleqtrdi 2849 |
. . . . 5
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) ∈ (Base‘(Scalar‘𝑀))) |
23 | 22, 17 | fmptd 6970 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))) |
24 | | fvex 6769 |
. . . . 5
⊢
(Base‘(Scalar‘𝑀)) ∈ V |
25 | | difexg 5246 |
. . . . . . 7
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V) |
26 | 25 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ V) |
27 | 26 | 3ad2ant1 1131 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∖ {𝑋}) ∈ V) |
28 | | elmapg 8586 |
. . . . 5
⊢
(((Base‘(Scalar‘𝑀)) ∈ V ∧ (𝑆 ∖ {𝑋}) ∈ V) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ↔ 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))) |
29 | 24, 27, 28 | sylancr 586 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ↔ 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))) |
30 | 23, 29 | mpbird 256 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋}))) |
31 | | difexg 5246 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∖ {𝑋}) ∈ V) |
32 | 31 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ∈ V) |
33 | | ssdifss 4066 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)) |
34 | 33 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))) |
35 | | elpwi 4539 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀)) |
36 | 34, 35 | impel 505 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)) |
37 | 32, 36 | elpwd 4538 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
38 | 37 | expcom 413 |
. . . . . . 7
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑋 ∈ 𝑆 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))) |
39 | 8 | pweqi 4548 |
. . . . . . 7
⊢ 𝒫
𝐵 = 𝒫
(Base‘𝑀) |
40 | 38, 39 | eleq2s 2857 |
. . . . . 6
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑋 ∈ 𝑆 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))) |
41 | 40 | imp 406 |
. . . . 5
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
42 | 41 | 3adant2 1129 |
. . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
43 | 42 | 3ad2ant1 1131 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
44 | | lincval 45638 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈
((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) |
45 | 2, 30, 43, 44 | syl3anc 1369 |
. 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) |
46 | | simp1 1134 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑆 ∈ 𝒫 𝐵) |
47 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) |
48 | 1, 46, 47 | 3jca 1126 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆)) |
49 | 48 | adantr 480 |
. . . . . 6
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆)) |
50 | | 3simpb 1147 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) → (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝐹 finSupp 0 )) |
51 | 50 | adantl 481 |
. . . . . 6
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝐹 finSupp 0 )) |
52 | | eqidd 2739 |
. . . . . 6
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝐹 ↾ (𝑆 ∖ {𝑋})) = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
53 | | eqid 2738 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
54 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝑀) = (+g‘𝑀) |
55 | 8, 9, 10, 53, 54, 12 | lincdifsn 45653 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝐹 finSupp 0 ) ∧ (𝐹 ↾ (𝑆 ∖ {𝑋})) = (𝐹 ↾ (𝑆 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑆) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋))) |
56 | 49, 51, 52, 55 | syl3anc 1369 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑆) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋))) |
57 | 56 | eqeq1d 2740 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝐹( linC ‘𝑀)𝑆) = 𝑍 ↔ (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = 𝑍)) |
58 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑧 → (𝐺‘𝑠) = (𝐺‘𝑧)) |
59 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑧 → 𝑠 = 𝑧) |
60 | 58, 59 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑧 → ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠) = ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) |
61 | 60 | cbvmptv 5183 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) |
62 | 61 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧))) |
63 | 62 | oveq2d 7271 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑀 Σg
(𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)))) |
64 | 63 | oveq2d 7271 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧))))) |
65 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | lincresunit3lem2 45709 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))) |
66 | 64, 65 | eqtr2d 2779 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))))) |
67 | 66 | oveq1d 7270 |
. . . . . 6
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋))) |
68 | 67 | eqeq1d 2740 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = 𝑍 ↔ (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = 𝑍)) |
69 | | lmodgrp 20045 |
. . . . . . . . 9
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
70 | 69 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑀 ∈ Grp) |
71 | 70 | adantr 480 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ Grp) |
72 | 1 | adantr 480 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ LMod) |
73 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → 𝐹:𝑆⟶𝐸) |
74 | 73 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) → 𝐹:𝑆⟶𝐸) |
75 | | ffvelrn 6941 |
. . . . . . . . 9
⊢ ((𝐹:𝑆⟶𝐸 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ 𝐸) |
76 | 74, 47, 75 | syl2anr 596 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝐹‘𝑋) ∈ 𝐸) |
77 | | elpwi 4539 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝒫 𝐵 → 𝑆 ⊆ 𝐵) |
78 | 77 | sselda 3917 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
79 | 78 | 3adant2 1129 |
. . . . . . . . 9
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
80 | 79 | adantr 480 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝑋 ∈ 𝐵) |
81 | 8, 9, 53, 10 | lmodvscl 20055 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ (𝐹‘𝑋) ∈ 𝐸 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵) |
82 | 72, 76, 80, 81 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵) |
83 | 9 | lmodfgrp 20047 |
. . . . . . . . . 10
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Grp) |
84 | 83 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ Grp) |
85 | 10, 14 | grpinvcl 18542 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Grp ∧ (𝐹‘𝑋) ∈ 𝐸) → (𝑁‘(𝐹‘𝑋)) ∈ 𝐸) |
86 | 84, 76, 85 | syl2an2r 681 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑁‘(𝐹‘𝑋)) ∈ 𝐸) |
87 | | lmodcmn 20086 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ LMod → 𝑀 ∈ CMnd) |
88 | 87 | 3ad2ant2 1132 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑀 ∈ CMnd) |
89 | 88 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ CMnd) |
90 | 26 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ V) |
91 | | simpll2 1211 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑀 ∈ LMod) |
92 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | lincresunit1 45706 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) |
93 | 92 | 3adantr3 1169 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) |
94 | | elmapi 8595 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸) |
96 | 95 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝐺‘𝑠) ∈ 𝐸) |
97 | | ssel2 3912 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑠 ∈ 𝑆) → 𝑠 ∈ 𝐵) |
98 | 97 | expcom 413 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ 𝑆 → (𝑆 ⊆ 𝐵 → 𝑠 ∈ 𝐵)) |
99 | 7, 77, 98 | syl2imc 41 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠 ∈ 𝐵)) |
100 | 99 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠 ∈ 𝐵)) |
101 | 100 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠 ∈ 𝐵)) |
102 | 101 | imp 406 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑠 ∈ 𝐵) |
103 | 8, 9, 53, 10 | lmodvscl 20055 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ (𝐺‘𝑠) ∈ 𝐸 ∧ 𝑠 ∈ 𝐵) → ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠) ∈ 𝐵) |
104 | 91, 96, 102, 103 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠) ∈ 𝐵) |
105 | 104 | fmpttd 6971 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)):(𝑆 ∖ {𝑋})⟶𝐵) |
106 | 25 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ V) |
107 | | ssdifss 4066 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 ⊆ 𝐵 → (𝑆 ∖ {𝑋}) ⊆ 𝐵) |
108 | 77, 107 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ⊆ 𝐵) |
109 | 108 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ⊆ 𝐵) |
110 | 109, 8 | sseqtrdi 3967 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)) |
111 | 106, 110 | elpwd 4538 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
112 | 111 | 3adant2 1129 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
113 | 1, 112 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))) |
114 | 113 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))) |
115 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | lincresunit2 45707 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺 finSupp 0 ) |
116 | 115, 12 | breqtrdi 5111 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺 finSupp
(0g‘𝑅)) |
117 | 9, 10 | scmfsupp 45602 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g‘𝑅)) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)) finSupp (0g‘𝑀)) |
118 | 114, 93, 116, 117 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)) finSupp (0g‘𝑀)) |
119 | 118, 13 | breqtrrdi 5112 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)) finSupp 𝑍) |
120 | 8, 13, 89, 90, 105, 119 | gsumcl 19431 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑀 Σg
(𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) ∈ 𝐵) |
121 | 8, 9, 53, 10 | lmodvscl 20055 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ (𝑁‘(𝐹‘𝑋)) ∈ 𝐸 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) ∈ 𝐵) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ∈ 𝐵) |
122 | 72, 86, 120, 121 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ∈ 𝐵) |
123 | | eqid 2738 |
. . . . . . . 8
⊢
(invg‘𝑀) = (invg‘𝑀) |
124 | 8, 54, 13, 123 | grpinvid2 18546 |
. . . . . . 7
⊢ ((𝑀 ∈ Grp ∧ ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵 ∧ ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ∈ 𝐵) → (((invg‘𝑀)‘((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ↔ (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = 𝑍)) |
125 | 71, 82, 122, 124 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) →
(((invg‘𝑀)‘((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ↔ (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = 𝑍)) |
126 | 8, 9, 53, 123, 10, 14, 72, 80, 76 | lmodvsneg 20082 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) →
((invg‘𝑀)‘((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)𝑋)) |
127 | 126 | eqeq1d 2740 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) →
(((invg‘𝑀)‘((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ↔ ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)𝑋) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))))) |
128 | | simpr2 1193 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝐹‘𝑋) ∈ 𝑈) |
129 | 8, 9, 10, 11, 14, 53 | lincresunit3lem3 45703 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) ∈ 𝐵) ∧ (𝐹‘𝑋) ∈ 𝑈) → (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)𝑋) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ↔ 𝑋 = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))))) |
130 | | eqcom 2745 |
. . . . . . . . . 10
⊢ (𝑋 = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋) |
131 | 129, 130 | bitrdi 286 |
. . . . . . . . 9
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) ∈ 𝐵) ∧ (𝐹‘𝑋) ∈ 𝑈) → (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)𝑋) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋)) |
132 | 72, 80, 120, 128, 131 | syl31anc 1371 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)𝑋) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋)) |
133 | 132 | biimpd 228 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)𝑋) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋)) |
134 | 127, 133 | sylbid 239 |
. . . . . 6
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) →
(((invg‘𝑀)‘((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋)) |
135 | 125, 134 | sylbird 259 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋)) |
136 | 68, 135 | sylbid 239 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋)) |
137 | 57, 136 | sylbid 239 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝐹( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋)) |
138 | 137 | 3impia 1115 |
. 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋) |
139 | 45, 138 | eqtrd 2778 |
1
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) |