| Step | Hyp | Ref
| Expression |
| 1 | | simp2 1138 |
. . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑀 ∈ LMod) |
| 2 | 1 | 3ad2ant1 1134 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝑀 ∈ LMod) |
| 3 | | simp1 1137 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆)) |
| 4 | | 3simpa 1149 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) → (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) |
| 5 | 4 | 3ad2ant2 1135 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) |
| 6 | 3, 5 | jca 511 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈))) |
| 7 | | eldifi 4131 |
. . . . . . 7
⊢ (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠 ∈ 𝑆) |
| 8 | | lincresunit.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑀) |
| 9 | | lincresunit.r |
. . . . . . . 8
⊢ 𝑅 = (Scalar‘𝑀) |
| 10 | | lincresunit.e |
. . . . . . . 8
⊢ 𝐸 = (Base‘𝑅) |
| 11 | | lincresunit.u |
. . . . . . . 8
⊢ 𝑈 = (Unit‘𝑅) |
| 12 | | lincresunit.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑅) |
| 13 | | lincresunit.z |
. . . . . . . 8
⊢ 𝑍 = (0g‘𝑀) |
| 14 | | lincresunit.n |
. . . . . . . 8
⊢ 𝑁 = (invg‘𝑅) |
| 15 | | lincresunit.i |
. . . . . . . 8
⊢ 𝐼 = (invr‘𝑅) |
| 16 | | lincresunit.t |
. . . . . . . 8
⊢ · =
(.r‘𝑅) |
| 17 | | lincresunit.g |
. . . . . . . 8
⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) |
| 18 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | lincresunitlem2 48393 |
. . . . . . 7
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑠 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) ∈ 𝐸) |
| 19 | 6, 7, 18 | syl2an 596 |
. . . . . 6
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) ∈ 𝐸) |
| 20 | 9 | fveq2i 6909 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘(Scalar‘𝑀)) |
| 21 | 10, 20 | eqtri 2765 |
. . . . . 6
⊢ 𝐸 =
(Base‘(Scalar‘𝑀)) |
| 22 | 19, 21 | eleqtrdi 2851 |
. . . . 5
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) ∈ (Base‘(Scalar‘𝑀))) |
| 23 | 22, 17 | fmptd 7134 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))) |
| 24 | | fvex 6919 |
. . . . 5
⊢
(Base‘(Scalar‘𝑀)) ∈ V |
| 25 | | difexg 5329 |
. . . . . . 7
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V) |
| 26 | 25 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ V) |
| 27 | 26 | 3ad2ant1 1134 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∖ {𝑋}) ∈ V) |
| 28 | | elmapg 8879 |
. . . . 5
⊢
(((Base‘(Scalar‘𝑀)) ∈ V ∧ (𝑆 ∖ {𝑋}) ∈ V) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ↔ 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))) |
| 29 | 24, 27, 28 | sylancr 587 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ↔ 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))) |
| 30 | 23, 29 | mpbird 257 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋}))) |
| 31 | | difexg 5329 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∖ {𝑋}) ∈ V) |
| 32 | 31 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ∈ V) |
| 33 | | ssdifss 4140 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)) |
| 34 | 33 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))) |
| 35 | | elpwi 4607 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀)) |
| 36 | 34, 35 | impel 505 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)) |
| 37 | 32, 36 | elpwd 4606 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
| 38 | 37 | expcom 413 |
. . . . . . 7
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑋 ∈ 𝑆 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))) |
| 39 | 8 | pweqi 4616 |
. . . . . . 7
⊢ 𝒫
𝐵 = 𝒫
(Base‘𝑀) |
| 40 | 38, 39 | eleq2s 2859 |
. . . . . 6
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑋 ∈ 𝑆 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))) |
| 41 | 40 | imp 406 |
. . . . 5
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
| 42 | 41 | 3adant2 1132 |
. . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
| 43 | 42 | 3ad2ant1 1134 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
| 44 | | lincval 48326 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈
((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) |
| 45 | 2, 30, 43, 44 | syl3anc 1373 |
. 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) |
| 46 | | simp1 1137 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑆 ∈ 𝒫 𝐵) |
| 47 | | simp3 1139 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) |
| 48 | 1, 46, 47 | 3jca 1129 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆)) |
| 49 | 48 | adantr 480 |
. . . . . 6
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆)) |
| 50 | | 3simpb 1150 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) → (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝐹 finSupp 0 )) |
| 51 | 50 | adantl 481 |
. . . . . 6
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝐹 finSupp 0 )) |
| 52 | | eqidd 2738 |
. . . . . 6
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝐹 ↾ (𝑆 ∖ {𝑋})) = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
| 53 | | eqid 2737 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
| 54 | | eqid 2737 |
. . . . . . 7
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 55 | 8, 9, 10, 53, 54, 12 | lincdifsn 48341 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝐹 finSupp 0 ) ∧ (𝐹 ↾ (𝑆 ∖ {𝑋})) = (𝐹 ↾ (𝑆 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑆) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋))) |
| 56 | 49, 51, 52, 55 | syl3anc 1373 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑆) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋))) |
| 57 | 56 | eqeq1d 2739 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝐹( linC ‘𝑀)𝑆) = 𝑍 ↔ (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = 𝑍)) |
| 58 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑧 → (𝐺‘𝑠) = (𝐺‘𝑧)) |
| 59 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑧 → 𝑠 = 𝑧) |
| 60 | 58, 59 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑧 → ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠) = ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) |
| 61 | 60 | cbvmptv 5255 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) |
| 62 | 61 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧))) |
| 63 | 62 | oveq2d 7447 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑀 Σg
(𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)))) |
| 64 | 63 | oveq2d 7447 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧))))) |
| 65 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | lincresunit3lem2 48397 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))) |
| 66 | 64, 65 | eqtr2d 2778 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))))) |
| 67 | 66 | oveq1d 7446 |
. . . . . 6
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋))) |
| 68 | 67 | eqeq1d 2739 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = 𝑍 ↔ (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = 𝑍)) |
| 69 | | lmodgrp 20865 |
. . . . . . . . 9
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
| 70 | 69 | 3ad2ant2 1135 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑀 ∈ Grp) |
| 71 | 70 | adantr 480 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ Grp) |
| 72 | 1 | adantr 480 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ LMod) |
| 73 | | elmapi 8889 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → 𝐹:𝑆⟶𝐸) |
| 74 | 73 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) → 𝐹:𝑆⟶𝐸) |
| 75 | | ffvelcdm 7101 |
. . . . . . . . 9
⊢ ((𝐹:𝑆⟶𝐸 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ 𝐸) |
| 76 | 74, 47, 75 | syl2anr 597 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝐹‘𝑋) ∈ 𝐸) |
| 77 | | elpwi 4607 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝒫 𝐵 → 𝑆 ⊆ 𝐵) |
| 78 | 77 | sselda 3983 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
| 79 | 78 | 3adant2 1132 |
. . . . . . . . 9
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
| 80 | 79 | adantr 480 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝑋 ∈ 𝐵) |
| 81 | 8, 9, 53, 10 | lmodvscl 20876 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ (𝐹‘𝑋) ∈ 𝐸 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵) |
| 82 | 72, 76, 80, 81 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵) |
| 83 | 9 | lmodfgrp 20867 |
. . . . . . . . . 10
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Grp) |
| 84 | 83 | 3ad2ant2 1135 |
. . . . . . . . 9
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ Grp) |
| 85 | 10, 14 | grpinvcl 19005 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Grp ∧ (𝐹‘𝑋) ∈ 𝐸) → (𝑁‘(𝐹‘𝑋)) ∈ 𝐸) |
| 86 | 84, 76, 85 | syl2an2r 685 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑁‘(𝐹‘𝑋)) ∈ 𝐸) |
| 87 | | lmodcmn 20908 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ LMod → 𝑀 ∈ CMnd) |
| 88 | 87 | 3ad2ant2 1135 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑀 ∈ CMnd) |
| 89 | 88 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ CMnd) |
| 90 | 26 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ V) |
| 91 | | simpll2 1214 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑀 ∈ LMod) |
| 92 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | lincresunit1 48394 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) |
| 93 | 92 | 3adantr3 1172 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) |
| 94 | | elmapi 8889 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸) |
| 95 | 93, 94 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸) |
| 96 | 95 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝐺‘𝑠) ∈ 𝐸) |
| 97 | | ssel2 3978 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑠 ∈ 𝑆) → 𝑠 ∈ 𝐵) |
| 98 | 97 | expcom 413 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ 𝑆 → (𝑆 ⊆ 𝐵 → 𝑠 ∈ 𝐵)) |
| 99 | 7, 77, 98 | syl2imc 41 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠 ∈ 𝐵)) |
| 100 | 99 | 3ad2ant1 1134 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠 ∈ 𝐵)) |
| 101 | 100 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠 ∈ 𝐵)) |
| 102 | 101 | imp 406 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑠 ∈ 𝐵) |
| 103 | 8, 9, 53, 10 | lmodvscl 20876 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ (𝐺‘𝑠) ∈ 𝐸 ∧ 𝑠 ∈ 𝐵) → ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠) ∈ 𝐵) |
| 104 | 91, 96, 102, 103 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠) ∈ 𝐵) |
| 105 | 104 | fmpttd 7135 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)):(𝑆 ∖ {𝑋})⟶𝐵) |
| 106 | 25 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ V) |
| 107 | | ssdifss 4140 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 ⊆ 𝐵 → (𝑆 ∖ {𝑋}) ⊆ 𝐵) |
| 108 | 77, 107 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ⊆ 𝐵) |
| 109 | 108 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ⊆ 𝐵) |
| 110 | 109, 8 | sseqtrdi 4024 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)) |
| 111 | 106, 110 | elpwd 4606 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
| 112 | 111 | 3adant2 1132 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) |
| 113 | 1, 112 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))) |
| 114 | 113 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))) |
| 115 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | lincresunit2 48395 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺 finSupp 0 ) |
| 116 | 115, 12 | breqtrdi 5184 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺 finSupp
(0g‘𝑅)) |
| 117 | 9, 10 | scmfsupp 48291 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g‘𝑅)) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)) finSupp (0g‘𝑀)) |
| 118 | 114, 93, 116, 117 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)) finSupp (0g‘𝑀)) |
| 119 | 118, 13 | breqtrrdi 5185 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)) finSupp 𝑍) |
| 120 | 8, 13, 89, 90, 105, 119 | gsumcl 19933 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝑀 Σg
(𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) ∈ 𝐵) |
| 121 | 8, 9, 53, 10 | lmodvscl 20876 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ (𝑁‘(𝐹‘𝑋)) ∈ 𝐸 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) ∈ 𝐵) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ∈ 𝐵) |
| 122 | 72, 86, 120, 121 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ∈ 𝐵) |
| 123 | | eqid 2737 |
. . . . . . . 8
⊢
(invg‘𝑀) = (invg‘𝑀) |
| 124 | 8, 54, 13, 123 | grpinvid2 19010 |
. . . . . . 7
⊢ ((𝑀 ∈ Grp ∧ ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ 𝐵 ∧ ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ∈ 𝐵) → (((invg‘𝑀)‘((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ↔ (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = 𝑍)) |
| 125 | 71, 82, 122, 124 | syl3anc 1373 |
. . . . . 6
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) →
(((invg‘𝑀)‘((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ↔ (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = 𝑍)) |
| 126 | 8, 9, 53, 123, 10, 14, 72, 80, 76 | lmodvsneg 20904 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) →
((invg‘𝑀)‘((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)𝑋)) |
| 127 | 126 | eqeq1d 2739 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) →
(((invg‘𝑀)‘((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ↔ ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)𝑋) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))))) |
| 128 | | simpr2 1196 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (𝐹‘𝑋) ∈ 𝑈) |
| 129 | 8, 9, 10, 11, 14, 53 | lincresunit3lem3 48391 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) ∈ 𝐵) ∧ (𝐹‘𝑋) ∈ 𝑈) → (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)𝑋) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ↔ 𝑋 = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))))) |
| 130 | | eqcom 2744 |
. . . . . . . . . 10
⊢ (𝑋 = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋) |
| 131 | 129, 130 | bitrdi 287 |
. . . . . . . . 9
⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) ∈ 𝐵) ∧ (𝐹‘𝑋) ∈ 𝑈) → (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)𝑋) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋)) |
| 132 | 72, 80, 120, 128, 131 | syl31anc 1375 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)𝑋) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋)) |
| 133 | 132 | biimpd 229 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → (((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)𝑋) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋)) |
| 134 | 127, 133 | sylbid 240 |
. . . . . 6
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) →
(((invg‘𝑀)‘((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠)))) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋)) |
| 135 | 125, 134 | sylbird 260 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋)) |
| 136 | 68, 135 | sylbid 240 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g‘𝑀)((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋)) |
| 137 | 57, 136 | sylbid 240 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝐹( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋)) |
| 138 | 137 | 3impia 1118 |
. 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑠)( ·𝑠
‘𝑀)𝑠))) = 𝑋) |
| 139 | 45, 138 | eqtrd 2777 |
1
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) |