Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3 Structured version   Visualization version   GIF version

Theorem lincresunit3 45710
Description: Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   0 ,𝑠   𝐺,𝑠   𝑅,𝑠   𝑍,𝑠

Proof of Theorem lincresunit3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ LMod)
213ad2ant1 1131 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝑀 ∈ LMod)
3 simp1 1134 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
4 3simpa 1146 . . . . . . . . 9 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
543ad2ant2 1132 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
63, 5jca 511 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)))
7 eldifi 4057 . . . . . . 7 (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝑆)
8 lincresunit.b . . . . . . . 8 𝐵 = (Base‘𝑀)
9 lincresunit.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
10 lincresunit.e . . . . . . . 8 𝐸 = (Base‘𝑅)
11 lincresunit.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
12 lincresunit.0 . . . . . . . 8 0 = (0g𝑅)
13 lincresunit.z . . . . . . . 8 𝑍 = (0g𝑀)
14 lincresunit.n . . . . . . . 8 𝑁 = (invg𝑅)
15 lincresunit.i . . . . . . . 8 𝐼 = (invr𝑅)
16 lincresunit.t . . . . . . . 8 · = (.r𝑅)
17 lincresunit.g . . . . . . . 8 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
188, 9, 10, 11, 12, 13, 14, 15, 16, 17lincresunitlem2 45705 . . . . . . 7 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑠𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
196, 7, 18syl2an 595 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
209fveq2i 6759 . . . . . . 7 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
2110, 20eqtri 2766 . . . . . 6 𝐸 = (Base‘(Scalar‘𝑀))
2219, 21eleqtrdi 2849 . . . . 5 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ (Base‘(Scalar‘𝑀)))
2322, 17fmptd 6970 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))
24 fvex 6769 . . . . 5 (Base‘(Scalar‘𝑀)) ∈ V
25 difexg 5246 . . . . . . 7 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V)
26253ad2ant1 1131 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
27263ad2ant1 1131 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∖ {𝑋}) ∈ V)
28 elmapg 8586 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ (𝑆 ∖ {𝑋}) ∈ V) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ↔ 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
2924, 27, 28sylancr 586 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ↔ 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
3023, 29mpbird 256 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})))
31 difexg 5246 . . . . . . . . . 10 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ∈ V)
3231adantl 481 . . . . . . . . 9 ((𝑋𝑆𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ∈ V)
33 ssdifss 4066 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))
3433a1i 11 . . . . . . . . . 10 (𝑋𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)))
35 elpwi 4539 . . . . . . . . . 10 (𝑆 ∈ 𝒫 (Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
3634, 35impel 505 . . . . . . . . 9 ((𝑋𝑆𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))
3732, 36elpwd 4538 . . . . . . . 8 ((𝑋𝑆𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
3837expcom 413 . . . . . . 7 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑋𝑆 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
398pweqi 4548 . . . . . . 7 𝒫 𝐵 = 𝒫 (Base‘𝑀)
4038, 39eleq2s 2857 . . . . . 6 (𝑆 ∈ 𝒫 𝐵 → (𝑋𝑆 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
4140imp 406 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
42413adant2 1129 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
43423ad2ant1 1131 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
44 lincval 45638 . . 3 ((𝑀 ∈ LMod ∧ 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))
452, 30, 43, 44syl3anc 1369 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))
46 simp1 1134 . . . . . . . 8 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑆 ∈ 𝒫 𝐵)
47 simp3 1136 . . . . . . . 8 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑋𝑆)
481, 46, 473jca 1126 . . . . . . 7 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑋𝑆))
4948adantr 480 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑋𝑆))
50 3simpb 1147 . . . . . . 7 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → (𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ))
5150adantl 481 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ))
52 eqidd 2739 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹 ↾ (𝑆 ∖ {𝑋})) = (𝐹 ↾ (𝑆 ∖ {𝑋})))
53 eqid 2738 . . . . . . 7 ( ·𝑠𝑀) = ( ·𝑠𝑀)
54 eqid 2738 . . . . . . 7 (+g𝑀) = (+g𝑀)
558, 9, 10, 53, 54, 12lincdifsn 45653 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ) ∧ (𝐹 ↾ (𝑆 ∖ {𝑋})) = (𝐹 ↾ (𝑆 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑆) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
5649, 51, 52, 55syl3anc 1369 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑆) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
5756eqeq1d 2740 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹( linC ‘𝑀)𝑆) = 𝑍 ↔ (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍))
58 fveq2 6756 . . . . . . . . . . . . 13 (𝑠 = 𝑧 → (𝐺𝑠) = (𝐺𝑧))
59 id 22 . . . . . . . . . . . . 13 (𝑠 = 𝑧𝑠 = 𝑧)
6058, 59oveq12d 7273 . . . . . . . . . . . 12 (𝑠 = 𝑧 → ((𝐺𝑠)( ·𝑠𝑀)𝑠) = ((𝐺𝑧)( ·𝑠𝑀)𝑧))
6160cbvmptv 5183 . . . . . . . . . . 11 (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧))
6261a1i 11 . . . . . . . . . 10 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))
6362oveq2d 7271 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧))))
6463oveq2d 7271 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))))
658, 9, 10, 11, 12, 13, 14, 15, 16, 17lincresunit3lem2 45709 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})))
6664, 65eqtr2d 2779 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))))
6766oveq1d 7270 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
6867eqeq1d 2740 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍 ↔ (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍))
69 lmodgrp 20045 . . . . . . . . 9 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
70693ad2ant2 1132 . . . . . . . 8 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ Grp)
7170adantr 480 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑀 ∈ Grp)
721adantr 480 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
73 elmapi 8595 . . . . . . . . . 10 (𝐹 ∈ (𝐸m 𝑆) → 𝐹:𝑆𝐸)
74733ad2ant1 1131 . . . . . . . . 9 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → 𝐹:𝑆𝐸)
75 ffvelrn 6941 . . . . . . . . 9 ((𝐹:𝑆𝐸𝑋𝑆) → (𝐹𝑋) ∈ 𝐸)
7674, 47, 75syl2anr 596 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝐸)
77 elpwi 4539 . . . . . . . . . . 11 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
7877sselda 3917 . . . . . . . . . 10 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → 𝑋𝐵)
79783adant2 1129 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑋𝐵)
8079adantr 480 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑋𝐵)
818, 9, 53, 10lmodvscl 20055 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝐹𝑋) ∈ 𝐸𝑋𝐵) → ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
8272, 76, 80, 81syl3anc 1369 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
839lmodfgrp 20047 . . . . . . . . . 10 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
84833ad2ant2 1132 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Grp)
8510, 14grpinvcl 18542 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ (𝐹𝑋) ∈ 𝐸) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
8684, 76, 85syl2an2r 681 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
87 lmodcmn 20086 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
88873ad2ant2 1132 . . . . . . . . . 10 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ CMnd)
8988adantr 480 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑀 ∈ CMnd)
9026adantr 480 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ V)
91 simpll2 1211 . . . . . . . . . . 11 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑀 ∈ LMod)
928, 9, 10, 11, 12, 13, 14, 15, 16, 17lincresunit1 45706 . . . . . . . . . . . . . 14 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))
93923adantr3 1169 . . . . . . . . . . . . 13 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))
94 elmapi 8595 . . . . . . . . . . . . 13 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
9593, 94syl 17 . . . . . . . . . . . 12 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
9695ffvelrnda 6943 . . . . . . . . . . 11 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑠) ∈ 𝐸)
97 ssel2 3912 . . . . . . . . . . . . . . . 16 ((𝑆𝐵𝑠𝑆) → 𝑠𝐵)
9897expcom 413 . . . . . . . . . . . . . . 15 (𝑠𝑆 → (𝑆𝐵𝑠𝐵))
997, 77, 98syl2imc 41 . . . . . . . . . . . . . 14 (𝑆 ∈ 𝒫 𝐵 → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝐵))
100993ad2ant1 1131 . . . . . . . . . . . . 13 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝐵))
101100adantr 480 . . . . . . . . . . . 12 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝐵))
102101imp 406 . . . . . . . . . . 11 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑠𝐵)
1038, 9, 53, 10lmodvscl 20055 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ (𝐺𝑠) ∈ 𝐸𝑠𝐵) → ((𝐺𝑠)( ·𝑠𝑀)𝑠) ∈ 𝐵)
10491, 96, 102, 103syl3anc 1369 . . . . . . . . . 10 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐺𝑠)( ·𝑠𝑀)𝑠) ∈ 𝐵)
105104fmpttd 6971 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)):(𝑆 ∖ {𝑋})⟶𝐵)
10625adantr 480 . . . . . . . . . . . . . . 15 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
107 ssdifss 4066 . . . . . . . . . . . . . . . . . 18 (𝑆𝐵 → (𝑆 ∖ {𝑋}) ⊆ 𝐵)
10877, 107syl 17 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ⊆ 𝐵)
109108adantr 480 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ⊆ 𝐵)
110109, 8sseqtrdi 3967 . . . . . . . . . . . . . . 15 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))
111106, 110elpwd 4538 . . . . . . . . . . . . . 14 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
1121113adant2 1129 . . . . . . . . . . . . 13 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
1131, 112jca 511 . . . . . . . . . . . 12 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
114113adantr 480 . . . . . . . . . . 11 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
1158, 9, 10, 11, 12, 13, 14, 15, 16, 17lincresunit2 45707 . . . . . . . . . . . 12 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
116115, 12breqtrdi 5111 . . . . . . . . . . 11 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp (0g𝑅))
1179, 10scmfsupp 45602 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g𝑅)) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) finSupp (0g𝑀))
118114, 93, 116, 117syl3anc 1369 . . . . . . . . . 10 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) finSupp (0g𝑀))
119118, 13breqtrrdi 5112 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) finSupp 𝑍)
1208, 13, 89, 90, 105, 119gsumcl 19431 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ∈ 𝐵)
1218, 9, 53, 10lmodvscl 20055 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑁‘(𝐹𝑋)) ∈ 𝐸 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ∈ 𝐵) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ∈ 𝐵)
12272, 86, 120, 121syl3anc 1369 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ∈ 𝐵)
123 eqid 2738 . . . . . . . 8 (invg𝑀) = (invg𝑀)
1248, 54, 13, 123grpinvid2 18546 . . . . . . 7 ((𝑀 ∈ Grp ∧ ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵 ∧ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ∈ 𝐵) → (((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍))
12571, 82, 122, 124syl3anc 1369 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍))
1268, 9, 53, 123, 10, 14, 72, 80, 76lmodvsneg 20082 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋))
127126eqeq1d 2740 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))))
128 simpr2 1193 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝑈)
1298, 9, 10, 11, 14, 53lincresunit3lem3 45703 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ∈ 𝐵) ∧ (𝐹𝑋) ∈ 𝑈) → (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ 𝑋 = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))))
130 eqcom 2745 . . . . . . . . . 10 (𝑋 = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋)
131129, 130bitrdi 286 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ∈ 𝐵) ∧ (𝐹𝑋) ∈ 𝑈) → (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
13272, 80, 120, 128, 131syl31anc 1371 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
133132biimpd 228 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
134127, 133sylbid 239 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
135125, 134sylbird 259 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
13668, 135sylbid 239 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
13757, 136sylbid 239 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
1381373impia 1115 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋)
13945, 138eqtrd 2778 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  wss 3883  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  cmpt 5153  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573   finSupp cfsupp 9058  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Grpcgrp 18492  invgcminusg 18493  CMndccmn 19301  Unitcui 19796  invrcinvr 19828  LModclmod 20038   linC clinc 45633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-lmod 20040  df-linc 45635
This theorem is referenced by:  lincreslvec3  45711
  Copyright terms: Public domain W3C validator