Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3 Structured version   Visualization version   GIF version

Theorem lincresunit3 45822
Description: Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   0 ,𝑠   𝐺,𝑠   𝑅,𝑠   𝑍,𝑠

Proof of Theorem lincresunit3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp2 1136 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ LMod)
213ad2ant1 1132 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝑀 ∈ LMod)
3 simp1 1135 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
4 3simpa 1147 . . . . . . . . 9 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
543ad2ant2 1133 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
63, 5jca 512 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)))
7 eldifi 4061 . . . . . . 7 (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝑆)
8 lincresunit.b . . . . . . . 8 𝐵 = (Base‘𝑀)
9 lincresunit.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
10 lincresunit.e . . . . . . . 8 𝐸 = (Base‘𝑅)
11 lincresunit.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
12 lincresunit.0 . . . . . . . 8 0 = (0g𝑅)
13 lincresunit.z . . . . . . . 8 𝑍 = (0g𝑀)
14 lincresunit.n . . . . . . . 8 𝑁 = (invg𝑅)
15 lincresunit.i . . . . . . . 8 𝐼 = (invr𝑅)
16 lincresunit.t . . . . . . . 8 · = (.r𝑅)
17 lincresunit.g . . . . . . . 8 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
188, 9, 10, 11, 12, 13, 14, 15, 16, 17lincresunitlem2 45817 . . . . . . 7 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑠𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
196, 7, 18syl2an 596 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
209fveq2i 6777 . . . . . . 7 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
2110, 20eqtri 2766 . . . . . 6 𝐸 = (Base‘(Scalar‘𝑀))
2219, 21eleqtrdi 2849 . . . . 5 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ (Base‘(Scalar‘𝑀)))
2322, 17fmptd 6988 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))
24 fvex 6787 . . . . 5 (Base‘(Scalar‘𝑀)) ∈ V
25 difexg 5251 . . . . . . 7 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V)
26253ad2ant1 1132 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
27263ad2ant1 1132 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∖ {𝑋}) ∈ V)
28 elmapg 8628 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ (𝑆 ∖ {𝑋}) ∈ V) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ↔ 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
2924, 27, 28sylancr 587 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ↔ 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
3023, 29mpbird 256 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})))
31 difexg 5251 . . . . . . . . . 10 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ∈ V)
3231adantl 482 . . . . . . . . 9 ((𝑋𝑆𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ∈ V)
33 ssdifss 4070 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))
3433a1i 11 . . . . . . . . . 10 (𝑋𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)))
35 elpwi 4542 . . . . . . . . . 10 (𝑆 ∈ 𝒫 (Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
3634, 35impel 506 . . . . . . . . 9 ((𝑋𝑆𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))
3732, 36elpwd 4541 . . . . . . . 8 ((𝑋𝑆𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
3837expcom 414 . . . . . . 7 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑋𝑆 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
398pweqi 4551 . . . . . . 7 𝒫 𝐵 = 𝒫 (Base‘𝑀)
4038, 39eleq2s 2857 . . . . . 6 (𝑆 ∈ 𝒫 𝐵 → (𝑋𝑆 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
4140imp 407 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
42413adant2 1130 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
43423ad2ant1 1132 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
44 lincval 45750 . . 3 ((𝑀 ∈ LMod ∧ 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))
452, 30, 43, 44syl3anc 1370 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))
46 simp1 1135 . . . . . . . 8 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑆 ∈ 𝒫 𝐵)
47 simp3 1137 . . . . . . . 8 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑋𝑆)
481, 46, 473jca 1127 . . . . . . 7 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑋𝑆))
4948adantr 481 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑋𝑆))
50 3simpb 1148 . . . . . . 7 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → (𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ))
5150adantl 482 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ))
52 eqidd 2739 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹 ↾ (𝑆 ∖ {𝑋})) = (𝐹 ↾ (𝑆 ∖ {𝑋})))
53 eqid 2738 . . . . . . 7 ( ·𝑠𝑀) = ( ·𝑠𝑀)
54 eqid 2738 . . . . . . 7 (+g𝑀) = (+g𝑀)
558, 9, 10, 53, 54, 12lincdifsn 45765 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ) ∧ (𝐹 ↾ (𝑆 ∖ {𝑋})) = (𝐹 ↾ (𝑆 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑆) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
5649, 51, 52, 55syl3anc 1370 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑆) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
5756eqeq1d 2740 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹( linC ‘𝑀)𝑆) = 𝑍 ↔ (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍))
58 fveq2 6774 . . . . . . . . . . . . 13 (𝑠 = 𝑧 → (𝐺𝑠) = (𝐺𝑧))
59 id 22 . . . . . . . . . . . . 13 (𝑠 = 𝑧𝑠 = 𝑧)
6058, 59oveq12d 7293 . . . . . . . . . . . 12 (𝑠 = 𝑧 → ((𝐺𝑠)( ·𝑠𝑀)𝑠) = ((𝐺𝑧)( ·𝑠𝑀)𝑧))
6160cbvmptv 5187 . . . . . . . . . . 11 (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧))
6261a1i 11 . . . . . . . . . 10 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))
6362oveq2d 7291 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧))))
6463oveq2d 7291 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))))
658, 9, 10, 11, 12, 13, 14, 15, 16, 17lincresunit3lem2 45821 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})))
6664, 65eqtr2d 2779 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))))
6766oveq1d 7290 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
6867eqeq1d 2740 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍 ↔ (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍))
69 lmodgrp 20130 . . . . . . . . 9 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
70693ad2ant2 1133 . . . . . . . 8 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ Grp)
7170adantr 481 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑀 ∈ Grp)
721adantr 481 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
73 elmapi 8637 . . . . . . . . . 10 (𝐹 ∈ (𝐸m 𝑆) → 𝐹:𝑆𝐸)
74733ad2ant1 1132 . . . . . . . . 9 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → 𝐹:𝑆𝐸)
75 ffvelrn 6959 . . . . . . . . 9 ((𝐹:𝑆𝐸𝑋𝑆) → (𝐹𝑋) ∈ 𝐸)
7674, 47, 75syl2anr 597 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝐸)
77 elpwi 4542 . . . . . . . . . . 11 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
7877sselda 3921 . . . . . . . . . 10 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → 𝑋𝐵)
79783adant2 1130 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑋𝐵)
8079adantr 481 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑋𝐵)
818, 9, 53, 10lmodvscl 20140 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝐹𝑋) ∈ 𝐸𝑋𝐵) → ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
8272, 76, 80, 81syl3anc 1370 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
839lmodfgrp 20132 . . . . . . . . . 10 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
84833ad2ant2 1133 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Grp)
8510, 14grpinvcl 18627 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ (𝐹𝑋) ∈ 𝐸) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
8684, 76, 85syl2an2r 682 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
87 lmodcmn 20171 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
88873ad2ant2 1133 . . . . . . . . . 10 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ CMnd)
8988adantr 481 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑀 ∈ CMnd)
9026adantr 481 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ V)
91 simpll2 1212 . . . . . . . . . . 11 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑀 ∈ LMod)
928, 9, 10, 11, 12, 13, 14, 15, 16, 17lincresunit1 45818 . . . . . . . . . . . . . 14 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))
93923adantr3 1170 . . . . . . . . . . . . 13 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))
94 elmapi 8637 . . . . . . . . . . . . 13 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
9593, 94syl 17 . . . . . . . . . . . 12 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
9695ffvelrnda 6961 . . . . . . . . . . 11 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑠) ∈ 𝐸)
97 ssel2 3916 . . . . . . . . . . . . . . . 16 ((𝑆𝐵𝑠𝑆) → 𝑠𝐵)
9897expcom 414 . . . . . . . . . . . . . . 15 (𝑠𝑆 → (𝑆𝐵𝑠𝐵))
997, 77, 98syl2imc 41 . . . . . . . . . . . . . 14 (𝑆 ∈ 𝒫 𝐵 → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝐵))
100993ad2ant1 1132 . . . . . . . . . . . . 13 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝐵))
101100adantr 481 . . . . . . . . . . . 12 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝐵))
102101imp 407 . . . . . . . . . . 11 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑠𝐵)
1038, 9, 53, 10lmodvscl 20140 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ (𝐺𝑠) ∈ 𝐸𝑠𝐵) → ((𝐺𝑠)( ·𝑠𝑀)𝑠) ∈ 𝐵)
10491, 96, 102, 103syl3anc 1370 . . . . . . . . . 10 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐺𝑠)( ·𝑠𝑀)𝑠) ∈ 𝐵)
105104fmpttd 6989 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)):(𝑆 ∖ {𝑋})⟶𝐵)
10625adantr 481 . . . . . . . . . . . . . . 15 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
107 ssdifss 4070 . . . . . . . . . . . . . . . . . 18 (𝑆𝐵 → (𝑆 ∖ {𝑋}) ⊆ 𝐵)
10877, 107syl 17 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ⊆ 𝐵)
109108adantr 481 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ⊆ 𝐵)
110109, 8sseqtrdi 3971 . . . . . . . . . . . . . . 15 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))
111106, 110elpwd 4541 . . . . . . . . . . . . . 14 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
1121113adant2 1130 . . . . . . . . . . . . 13 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
1131, 112jca 512 . . . . . . . . . . . 12 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
114113adantr 481 . . . . . . . . . . 11 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
1158, 9, 10, 11, 12, 13, 14, 15, 16, 17lincresunit2 45819 . . . . . . . . . . . 12 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
116115, 12breqtrdi 5115 . . . . . . . . . . 11 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp (0g𝑅))
1179, 10scmfsupp 45714 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g𝑅)) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) finSupp (0g𝑀))
118114, 93, 116, 117syl3anc 1370 . . . . . . . . . 10 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) finSupp (0g𝑀))
119118, 13breqtrrdi 5116 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) finSupp 𝑍)
1208, 13, 89, 90, 105, 119gsumcl 19516 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ∈ 𝐵)
1218, 9, 53, 10lmodvscl 20140 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑁‘(𝐹𝑋)) ∈ 𝐸 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ∈ 𝐵) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ∈ 𝐵)
12272, 86, 120, 121syl3anc 1370 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ∈ 𝐵)
123 eqid 2738 . . . . . . . 8 (invg𝑀) = (invg𝑀)
1248, 54, 13, 123grpinvid2 18631 . . . . . . 7 ((𝑀 ∈ Grp ∧ ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵 ∧ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ∈ 𝐵) → (((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍))
12571, 82, 122, 124syl3anc 1370 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍))
1268, 9, 53, 123, 10, 14, 72, 80, 76lmodvsneg 20167 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋))
127126eqeq1d 2740 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))))
128 simpr2 1194 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝑈)
1298, 9, 10, 11, 14, 53lincresunit3lem3 45815 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ∈ 𝐵) ∧ (𝐹𝑋) ∈ 𝑈) → (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ 𝑋 = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))))
130 eqcom 2745 . . . . . . . . . 10 (𝑋 = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋)
131129, 130bitrdi 287 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ∈ 𝐵) ∧ (𝐹𝑋) ∈ 𝑈) → (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
13272, 80, 120, 128, 131syl31anc 1372 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
133132biimpd 228 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
134127, 133sylbid 239 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
135125, 134sylbird 259 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
13668, 135sylbid 239 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
13757, 136sylbid 239 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
1381373impia 1116 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋)
13945, 138eqtrd 2778 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  wss 3887  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  cmpt 5157  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615   finSupp cfsupp 9128  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150   Σg cgsu 17151  Grpcgrp 18577  invgcminusg 18578  CMndccmn 19386  Unitcui 19881  invrcinvr 19913  LModclmod 20123   linC clinc 45745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-lmod 20125  df-linc 45747
This theorem is referenced by:  lincreslvec3  45823
  Copyright terms: Public domain W3C validator