Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3 Structured version   Visualization version   GIF version

Theorem lincresunit3 48470
Description: Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   0 ,𝑠   𝐺,𝑠   𝑅,𝑠   𝑍,𝑠

Proof of Theorem lincresunit3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ LMod)
213ad2ant1 1133 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝑀 ∈ LMod)
3 simp1 1136 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
4 3simpa 1148 . . . . . . . . 9 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
543ad2ant2 1134 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
63, 5jca 511 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)))
7 eldifi 4094 . . . . . . 7 (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝑆)
8 lincresunit.b . . . . . . . 8 𝐵 = (Base‘𝑀)
9 lincresunit.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
10 lincresunit.e . . . . . . . 8 𝐸 = (Base‘𝑅)
11 lincresunit.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
12 lincresunit.0 . . . . . . . 8 0 = (0g𝑅)
13 lincresunit.z . . . . . . . 8 𝑍 = (0g𝑀)
14 lincresunit.n . . . . . . . 8 𝑁 = (invg𝑅)
15 lincresunit.i . . . . . . . 8 𝐼 = (invr𝑅)
16 lincresunit.t . . . . . . . 8 · = (.r𝑅)
17 lincresunit.g . . . . . . . 8 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
188, 9, 10, 11, 12, 13, 14, 15, 16, 17lincresunitlem2 48465 . . . . . . 7 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑠𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
196, 7, 18syl2an 596 . . . . . 6 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
209fveq2i 6861 . . . . . . 7 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
2110, 20eqtri 2752 . . . . . 6 𝐸 = (Base‘(Scalar‘𝑀))
2219, 21eleqtrdi 2838 . . . . 5 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ (Base‘(Scalar‘𝑀)))
2322, 17fmptd 7086 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))
24 fvex 6871 . . . . 5 (Base‘(Scalar‘𝑀)) ∈ V
25 difexg 5284 . . . . . . 7 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V)
26253ad2ant1 1133 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
27263ad2ant1 1133 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∖ {𝑋}) ∈ V)
28 elmapg 8812 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ (𝑆 ∖ {𝑋}) ∈ V) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ↔ 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
2924, 27, 28sylancr 587 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ↔ 𝐺:(𝑆 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
3023, 29mpbird 257 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})))
31 difexg 5284 . . . . . . . . . 10 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑋}) ∈ V)
3231adantl 481 . . . . . . . . 9 ((𝑋𝑆𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ∈ V)
33 ssdifss 4103 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))
3433a1i 11 . . . . . . . . . 10 (𝑋𝑆 → (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀)))
35 elpwi 4570 . . . . . . . . . 10 (𝑆 ∈ 𝒫 (Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
3634, 35impel 505 . . . . . . . . 9 ((𝑋𝑆𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))
3732, 36elpwd 4569 . . . . . . . 8 ((𝑋𝑆𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
3837expcom 413 . . . . . . 7 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑋𝑆 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
398pweqi 4579 . . . . . . 7 𝒫 𝐵 = 𝒫 (Base‘𝑀)
4038, 39eleq2s 2846 . . . . . 6 (𝑆 ∈ 𝒫 𝐵 → (𝑋𝑆 → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
4140imp 406 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
42413adant2 1131 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
43423ad2ant1 1133 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
44 lincval 48398 . . 3 ((𝑀 ∈ LMod ∧ 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑m (𝑆 ∖ {𝑋})) ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))
452, 30, 43, 44syl3anc 1373 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))
46 simp1 1136 . . . . . . . 8 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑆 ∈ 𝒫 𝐵)
47 simp3 1138 . . . . . . . 8 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑋𝑆)
481, 46, 473jca 1128 . . . . . . 7 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑋𝑆))
4948adantr 480 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑋𝑆))
50 3simpb 1149 . . . . . . 7 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → (𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ))
5150adantl 481 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ))
52 eqidd 2730 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹 ↾ (𝑆 ∖ {𝑋})) = (𝐹 ↾ (𝑆 ∖ {𝑋})))
53 eqid 2729 . . . . . . 7 ( ·𝑠𝑀) = ( ·𝑠𝑀)
54 eqid 2729 . . . . . . 7 (+g𝑀) = (+g𝑀)
558, 9, 10, 53, 54, 12lincdifsn 48413 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ) ∧ (𝐹 ↾ (𝑆 ∖ {𝑋})) = (𝐹 ↾ (𝑆 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑆) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
5649, 51, 52, 55syl3anc 1373 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑆) = (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
5756eqeq1d 2731 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹( linC ‘𝑀)𝑆) = 𝑍 ↔ (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍))
58 fveq2 6858 . . . . . . . . . . . . 13 (𝑠 = 𝑧 → (𝐺𝑠) = (𝐺𝑧))
59 id 22 . . . . . . . . . . . . 13 (𝑠 = 𝑧𝑠 = 𝑧)
6058, 59oveq12d 7405 . . . . . . . . . . . 12 (𝑠 = 𝑧 → ((𝐺𝑠)( ·𝑠𝑀)𝑠) = ((𝐺𝑧)( ·𝑠𝑀)𝑧))
6160cbvmptv 5211 . . . . . . . . . . 11 (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧))
6261a1i 11 . . . . . . . . . 10 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) = (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))
6362oveq2d 7403 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = (𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧))))
6463oveq2d 7403 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))))
658, 9, 10, 11, 12, 13, 14, 15, 16, 17lincresunit3lem2 48469 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})))
6664, 65eqtr2d 2765 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))))
6766oveq1d 7402 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
6867eqeq1d 2731 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍 ↔ (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍))
69 lmodgrp 20773 . . . . . . . . 9 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
70693ad2ant2 1134 . . . . . . . 8 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ Grp)
7170adantr 480 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑀 ∈ Grp)
721adantr 480 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
73 elmapi 8822 . . . . . . . . . 10 (𝐹 ∈ (𝐸m 𝑆) → 𝐹:𝑆𝐸)
74733ad2ant1 1133 . . . . . . . . 9 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) → 𝐹:𝑆𝐸)
75 ffvelcdm 7053 . . . . . . . . 9 ((𝐹:𝑆𝐸𝑋𝑆) → (𝐹𝑋) ∈ 𝐸)
7674, 47, 75syl2anr 597 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝐸)
77 elpwi 4570 . . . . . . . . . . 11 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
7877sselda 3946 . . . . . . . . . 10 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → 𝑋𝐵)
79783adant2 1131 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑋𝐵)
8079adantr 480 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑋𝐵)
818, 9, 53, 10lmodvscl 20784 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝐹𝑋) ∈ 𝐸𝑋𝐵) → ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
8272, 76, 80, 81syl3anc 1373 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵)
839lmodfgrp 20775 . . . . . . . . . 10 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
84833ad2ant2 1134 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Grp)
8510, 14grpinvcl 18919 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ (𝐹𝑋) ∈ 𝐸) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
8684, 76, 85syl2an2r 685 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
87 lmodcmn 20816 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
88873ad2ant2 1134 . . . . . . . . . 10 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ CMnd)
8988adantr 480 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝑀 ∈ CMnd)
9026adantr 480 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑆 ∖ {𝑋}) ∈ V)
91 simpll2 1214 . . . . . . . . . . 11 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑀 ∈ LMod)
928, 9, 10, 11, 12, 13, 14, 15, 16, 17lincresunit1 48466 . . . . . . . . . . . . . 14 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))
93923adantr3 1172 . . . . . . . . . . . . 13 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))
94 elmapi 8822 . . . . . . . . . . . . 13 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
9593, 94syl 17 . . . . . . . . . . . 12 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
9695ffvelcdmda 7056 . . . . . . . . . . 11 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → (𝐺𝑠) ∈ 𝐸)
97 ssel2 3941 . . . . . . . . . . . . . . . 16 ((𝑆𝐵𝑠𝑆) → 𝑠𝐵)
9897expcom 413 . . . . . . . . . . . . . . 15 (𝑠𝑆 → (𝑆𝐵𝑠𝐵))
997, 77, 98syl2imc 41 . . . . . . . . . . . . . 14 (𝑆 ∈ 𝒫 𝐵 → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝐵))
100993ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝐵))
101100adantr 480 . . . . . . . . . . . 12 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝐵))
102101imp 406 . . . . . . . . . . 11 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → 𝑠𝐵)
1038, 9, 53, 10lmodvscl 20784 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ (𝐺𝑠) ∈ 𝐸𝑠𝐵) → ((𝐺𝑠)( ·𝑠𝑀)𝑠) ∈ 𝐵)
10491, 96, 102, 103syl3anc 1373 . . . . . . . . . 10 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐺𝑠)( ·𝑠𝑀)𝑠) ∈ 𝐵)
105104fmpttd 7087 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)):(𝑆 ∖ {𝑋})⟶𝐵)
10625adantr 480 . . . . . . . . . . . . . . 15 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
107 ssdifss 4103 . . . . . . . . . . . . . . . . . 18 (𝑆𝐵 → (𝑆 ∖ {𝑋}) ⊆ 𝐵)
10877, 107syl 17 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ⊆ 𝐵)
109108adantr 480 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ⊆ 𝐵)
110109, 8sseqtrdi 3987 . . . . . . . . . . . . . . 15 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ⊆ (Base‘𝑀))
111106, 110elpwd 4569 . . . . . . . . . . . . . 14 ((𝑆 ∈ 𝒫 𝐵𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
1121113adant2 1131 . . . . . . . . . . . . 13 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
1131, 112jca 511 . . . . . . . . . . . 12 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
114113adantr 480 . . . . . . . . . . 11 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)))
1158, 9, 10, 11, 12, 13, 14, 15, 16, 17lincresunit2 48467 . . . . . . . . . . . 12 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
116115, 12breqtrdi 5148 . . . . . . . . . . 11 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp (0g𝑅))
1179, 10scmfsupp 48363 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) ∧ 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) ∧ 𝐺 finSupp (0g𝑅)) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) finSupp (0g𝑀))
118114, 93, 116, 117syl3anc 1373 . . . . . . . . . 10 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) finSupp (0g𝑀))
119118, 13breqtrrdi 5149 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)) finSupp 𝑍)
1208, 13, 89, 90, 105, 119gsumcl 19845 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ∈ 𝐵)
1218, 9, 53, 10lmodvscl 20784 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑁‘(𝐹𝑋)) ∈ 𝐸 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ∈ 𝐵) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ∈ 𝐵)
12272, 86, 120, 121syl3anc 1373 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ∈ 𝐵)
123 eqid 2729 . . . . . . . 8 (invg𝑀) = (invg𝑀)
1248, 54, 13, 123grpinvid2 18924 . . . . . . 7 ((𝑀 ∈ Grp ∧ ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ 𝐵 ∧ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ∈ 𝐵) → (((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍))
12571, 82, 122, 124syl3anc 1373 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍))
1268, 9, 53, 123, 10, 14, 72, 80, 76lmodvsneg 20812 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋))
127126eqeq1d 2731 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))))
128 simpr2 1196 . . . . . . . . 9 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝑈)
1298, 9, 10, 11, 14, 53lincresunit3lem3 48463 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ∈ 𝐵) ∧ (𝐹𝑋) ∈ 𝑈) → (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ 𝑋 = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))))
130 eqcom 2736 . . . . . . . . . 10 (𝑋 = (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋)
131129, 130bitrdi 287 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵 ∧ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) ∈ 𝐵) ∧ (𝐹𝑋) ∈ 𝑈) → (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
13272, 80, 120, 128, 131syl31anc 1375 . . . . . . . 8 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) ↔ (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
133132biimpd 229 . . . . . . 7 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((𝑁‘(𝐹𝑋))( ·𝑠𝑀)𝑋) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
134127, 133sylbid 240 . . . . . 6 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → (((invg𝑀)‘((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠)))) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
135125, 134sylbird 260 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
13668, 135sylbid 240 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
13757, 136sylbid 240 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝐹( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋))
1381373impia 1117 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑀 Σg (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑠)( ·𝑠𝑀)𝑠))) = 𝑋)
13945, 138eqtrd 2764 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  wss 3914  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  cmpt 5188  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799   finSupp cfsupp 9312  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402   Σg cgsu 17403  Grpcgrp 18865  invgcminusg 18866  CMndccmn 19710  Unitcui 20264  invrcinvr 20296  LModclmod 20766   linC clinc 48393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-lmod 20768  df-linc 48395
This theorem is referenced by:  lincreslvec3  48471
  Copyright terms: Public domain W3C validator