MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumeven Structured version   Visualization version   GIF version

Theorem sumeven 16305
Description: If every term in a sum is even, then so is the sum. (Contributed by AV, 14-Aug-2021.)
Hypotheses
Ref Expression
sumeven.a (𝜑𝐴 ∈ Fin)
sumeven.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
sumeven.e ((𝜑𝑘𝐴) → 2 ∥ 𝐵)
Assertion
Ref Expression
sumeven (𝜑 → 2 ∥ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumeven
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 15603 . . 3 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
21breq2d 5107 . 2 (𝑥 = ∅ → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ ∅ 𝐵))
3 sumeq1 15603 . . 3 (𝑥 = 𝑦 → Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
43breq2d 5107 . 2 (𝑥 = 𝑦 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝑦 𝐵))
5 sumeq1 15603 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
65breq2d 5107 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
7 sumeq1 15603 . . 3 (𝑥 = 𝐴 → Σ𝑘𝑥 𝐵 = Σ𝑘𝐴 𝐵)
87breq2d 5107 . 2 (𝑥 = 𝐴 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝐴 𝐵))
9 z0even 16285 . . . 4 2 ∥ 0
10 sum0 15635 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
119, 10breqtrri 5122 . . 3 2 ∥ Σ𝑘 ∈ ∅ 𝐵
1211a1i 11 . 2 (𝜑 → 2 ∥ Σ𝑘 ∈ ∅ 𝐵)
13 2z 12514 . . . . . . . 8 2 ∈ ℤ
1413a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 2 ∈ ℤ)
15 sumeven.a . . . . . . . . 9 (𝜑𝐴 ∈ Fin)
16 ssfi 9093 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
1716expcom 413 . . . . . . . . . 10 (𝑦𝐴 → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
1817adantr 480 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
1915, 18mpan9 506 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
20 simpll 766 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
21 ssel 3924 . . . . . . . . . . . 12 (𝑦𝐴 → (𝑘𝑦𝑘𝐴))
2221adantr 480 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘𝑦𝑘𝐴))
2322adantl 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘𝑦𝑘𝐴))
2423imp 406 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
25 sumeven.b . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
2620, 24, 25syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
2719, 26fsumzcl 15649 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℤ)
28 eldifi 4080 . . . . . . . . . 10 (𝑧 ∈ (𝐴𝑦) → 𝑧𝐴)
2928adantl 481 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝐴)
3029adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
3125adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
3231ralrimiva 3125 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℤ)
33 rspcsbela 4387 . . . . . . . 8 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3430, 32, 33syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3514, 27, 343jca 1128 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ))
3635adantr 480 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ))
37 sumeven.e . . . . . . . . . 10 ((𝜑𝑘𝐴) → 2 ∥ 𝐵)
3837ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 2 ∥ 𝐵)
39 nfcv 2895 . . . . . . . . . . 11 𝑘2
40 nfcv 2895 . . . . . . . . . . 11 𝑘
41 nfcsb1v 3870 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4239, 40, 41nfbr 5142 . . . . . . . . . 10 𝑘2 ∥ 𝑧 / 𝑘𝐵
43 csbeq1a 3860 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4443breq2d 5107 . . . . . . . . . 10 (𝑘 = 𝑧 → (2 ∥ 𝐵 ↔ 2 ∥ 𝑧 / 𝑘𝐵))
4542, 44rspc 3561 . . . . . . . . 9 (𝑧𝐴 → (∀𝑘𝐴 2 ∥ 𝐵 → 2 ∥ 𝑧 / 𝑘𝐵))
4628, 38, 45syl2imc 41 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐴𝑦) → 2 ∥ 𝑧 / 𝑘𝐵))
4746a1d 25 . . . . . . 7 (𝜑 → (𝑦𝐴 → (𝑧 ∈ (𝐴𝑦) → 2 ∥ 𝑧 / 𝑘𝐵)))
4847imp32 418 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 2 ∥ 𝑧 / 𝑘𝐵)
4948anim1ci 616 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∥ Σ𝑘𝑦 𝐵 ∧ 2 ∥ 𝑧 / 𝑘𝐵))
50 dvds2add 16208 . . . . 5 ((2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ) → ((2 ∥ Σ𝑘𝑦 𝐵 ∧ 2 ∥ 𝑧 / 𝑘𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
5136, 49, 50sylc 65 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
52 vex 3441 . . . . . . 7 𝑧 ∈ V
5352a1i 11 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ V)
54 eldif 3908 . . . . . . . . 9 (𝑧 ∈ (𝐴𝑦) ↔ (𝑧𝐴 ∧ ¬ 𝑧𝑦))
55 df-nel 3034 . . . . . . . . . 10 (𝑧𝑦 ↔ ¬ 𝑧𝑦)
5655biimpri 228 . . . . . . . . 9 𝑧𝑦𝑧𝑦)
5754, 56simplbiim 504 . . . . . . . 8 (𝑧 ∈ (𝐴𝑦) → 𝑧𝑦)
5857adantl 481 . . . . . . 7 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝑦)
5958adantl 481 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝑦)
60 simpll 766 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
61 elun 4102 . . . . . . . . . . 11 (𝑘 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑘𝑦𝑘 ∈ {𝑧}))
6222com12 32 . . . . . . . . . . . . 13 (𝑘𝑦 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
63 elsni 4594 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑧} → 𝑘 = 𝑧)
64 eleq1w 2816 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
6529, 64imbitrrid 246 . . . . . . . . . . . . . 14 (𝑘 = 𝑧 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6663, 65syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ {𝑧} → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6762, 66jaoi 857 . . . . . . . . . . . 12 ((𝑘𝑦𝑘 ∈ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6867com12 32 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → ((𝑘𝑦𝑘 ∈ {𝑧}) → 𝑘𝐴))
6961, 68biimtrid 242 . . . . . . . . . 10 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
7069adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
7170imp 406 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
7260, 71, 25syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℤ)
7372ralrimiva 3125 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
74 fsumsplitsnun 15669 . . . . . 6 ((𝑦 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝑦) ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7519, 53, 59, 73, 74syl121anc 1377 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7675adantr 480 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7751, 76breqtrrd 5123 . . 3 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
7877ex 412 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 → 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
792, 4, 6, 8, 12, 78, 15findcard2d 9087 1 (𝜑 → 2 ∥ Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wnel 3033  wral 3048  Vcvv 3437  csb 3846  cdif 3895  cun 3896  wss 3898  c0 4282  {csn 4577   class class class wbr 5095  (class class class)co 7355  Fincfn 8879  0cc0 11017   + caddc 11020  2c2 12191  cz 12479  Σcsu 15600  cdvds 16170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-sum 15601  df-dvds 16171
This theorem is referenced by:  vtxdgoddnumeven  29553
  Copyright terms: Public domain W3C validator