MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumeven Structured version   Visualization version   GIF version

Theorem sumeven 16326
Description: If every term in a sum is even, then so is the sum. (Contributed by AV, 14-Aug-2021.)
Hypotheses
Ref Expression
sumeven.a (𝜑𝐴 ∈ Fin)
sumeven.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
sumeven.e ((𝜑𝑘𝐴) → 2 ∥ 𝐵)
Assertion
Ref Expression
sumeven (𝜑 → 2 ∥ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumeven
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 15631 . . 3 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
21breq2d 5159 . 2 (𝑥 = ∅ → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ ∅ 𝐵))
3 sumeq1 15631 . . 3 (𝑥 = 𝑦 → Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
43breq2d 5159 . 2 (𝑥 = 𝑦 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝑦 𝐵))
5 sumeq1 15631 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
65breq2d 5159 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
7 sumeq1 15631 . . 3 (𝑥 = 𝐴 → Σ𝑘𝑥 𝐵 = Σ𝑘𝐴 𝐵)
87breq2d 5159 . 2 (𝑥 = 𝐴 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝐴 𝐵))
9 z0even 16306 . . . 4 2 ∥ 0
10 sum0 15663 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
119, 10breqtrri 5174 . . 3 2 ∥ Σ𝑘 ∈ ∅ 𝐵
1211a1i 11 . 2 (𝜑 → 2 ∥ Σ𝑘 ∈ ∅ 𝐵)
13 2z 12590 . . . . . . . 8 2 ∈ ℤ
1413a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 2 ∈ ℤ)
15 sumeven.a . . . . . . . . 9 (𝜑𝐴 ∈ Fin)
16 ssfi 9169 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
1716expcom 414 . . . . . . . . . 10 (𝑦𝐴 → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
1817adantr 481 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
1915, 18mpan9 507 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
20 simpll 765 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
21 ssel 3974 . . . . . . . . . . . 12 (𝑦𝐴 → (𝑘𝑦𝑘𝐴))
2221adantr 481 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘𝑦𝑘𝐴))
2322adantl 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘𝑦𝑘𝐴))
2423imp 407 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
25 sumeven.b . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
2620, 24, 25syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
2719, 26fsumzcl 15677 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℤ)
28 eldifi 4125 . . . . . . . . . 10 (𝑧 ∈ (𝐴𝑦) → 𝑧𝐴)
2928adantl 482 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝐴)
3029adantl 482 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
3125adantlr 713 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
3231ralrimiva 3146 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℤ)
33 rspcsbela 4434 . . . . . . . 8 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3430, 32, 33syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3514, 27, 343jca 1128 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ))
3635adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ))
37 sumeven.e . . . . . . . . . 10 ((𝜑𝑘𝐴) → 2 ∥ 𝐵)
3837ralrimiva 3146 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 2 ∥ 𝐵)
39 nfcv 2903 . . . . . . . . . . 11 𝑘2
40 nfcv 2903 . . . . . . . . . . 11 𝑘
41 nfcsb1v 3917 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4239, 40, 41nfbr 5194 . . . . . . . . . 10 𝑘2 ∥ 𝑧 / 𝑘𝐵
43 csbeq1a 3906 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4443breq2d 5159 . . . . . . . . . 10 (𝑘 = 𝑧 → (2 ∥ 𝐵 ↔ 2 ∥ 𝑧 / 𝑘𝐵))
4542, 44rspc 3600 . . . . . . . . 9 (𝑧𝐴 → (∀𝑘𝐴 2 ∥ 𝐵 → 2 ∥ 𝑧 / 𝑘𝐵))
4628, 38, 45syl2imc 41 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐴𝑦) → 2 ∥ 𝑧 / 𝑘𝐵))
4746a1d 25 . . . . . . 7 (𝜑 → (𝑦𝐴 → (𝑧 ∈ (𝐴𝑦) → 2 ∥ 𝑧 / 𝑘𝐵)))
4847imp32 419 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 2 ∥ 𝑧 / 𝑘𝐵)
4948anim1ci 616 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∥ Σ𝑘𝑦 𝐵 ∧ 2 ∥ 𝑧 / 𝑘𝐵))
50 dvds2add 16229 . . . . 5 ((2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ) → ((2 ∥ Σ𝑘𝑦 𝐵 ∧ 2 ∥ 𝑧 / 𝑘𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
5136, 49, 50sylc 65 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
52 vex 3478 . . . . . . 7 𝑧 ∈ V
5352a1i 11 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ V)
54 eldif 3957 . . . . . . . . 9 (𝑧 ∈ (𝐴𝑦) ↔ (𝑧𝐴 ∧ ¬ 𝑧𝑦))
55 df-nel 3047 . . . . . . . . . 10 (𝑧𝑦 ↔ ¬ 𝑧𝑦)
5655biimpri 227 . . . . . . . . 9 𝑧𝑦𝑧𝑦)
5754, 56simplbiim 505 . . . . . . . 8 (𝑧 ∈ (𝐴𝑦) → 𝑧𝑦)
5857adantl 482 . . . . . . 7 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝑦)
5958adantl 482 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝑦)
60 simpll 765 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
61 elun 4147 . . . . . . . . . . 11 (𝑘 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑘𝑦𝑘 ∈ {𝑧}))
6222com12 32 . . . . . . . . . . . . 13 (𝑘𝑦 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
63 elsni 4644 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑧} → 𝑘 = 𝑧)
64 eleq1w 2816 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
6529, 64imbitrrid 245 . . . . . . . . . . . . . 14 (𝑘 = 𝑧 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6663, 65syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ {𝑧} → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6762, 66jaoi 855 . . . . . . . . . . . 12 ((𝑘𝑦𝑘 ∈ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6867com12 32 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → ((𝑘𝑦𝑘 ∈ {𝑧}) → 𝑘𝐴))
6961, 68biimtrid 241 . . . . . . . . . 10 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
7069adantl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
7170imp 407 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
7260, 71, 25syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℤ)
7372ralrimiva 3146 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
74 fsumsplitsnun 15697 . . . . . 6 ((𝑦 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝑦) ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7519, 53, 59, 73, 74syl121anc 1375 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7675adantr 481 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7751, 76breqtrrd 5175 . . 3 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
7877ex 413 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 → 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
792, 4, 6, 8, 12, 78, 15findcard2d 9162 1 (𝜑 → 2 ∥ Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wnel 3046  wral 3061  Vcvv 3474  csb 3892  cdif 3944  cun 3945  wss 3947  c0 4321  {csn 4627   class class class wbr 5147  (class class class)co 7405  Fincfn 8935  0cc0 11106   + caddc 11109  2c2 12263  cz 12554  Σcsu 15628  cdvds 16193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-dvds 16194
This theorem is referenced by:  vtxdgoddnumeven  28799
  Copyright terms: Public domain W3C validator