MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumeven Structured version   Visualization version   GIF version

Theorem sumeven 15732
Description: If every term in a sum is even, then so is the sum. (Contributed by AV, 14-Aug-2021.)
Hypotheses
Ref Expression
sumeven.a (𝜑𝐴 ∈ Fin)
sumeven.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
sumeven.e ((𝜑𝑘𝐴) → 2 ∥ 𝐵)
Assertion
Ref Expression
sumeven (𝜑 → 2 ∥ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumeven
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 15039 . . 3 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
21breq2d 5070 . 2 (𝑥 = ∅ → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ ∅ 𝐵))
3 sumeq1 15039 . . 3 (𝑥 = 𝑦 → Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
43breq2d 5070 . 2 (𝑥 = 𝑦 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝑦 𝐵))
5 sumeq1 15039 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
65breq2d 5070 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
7 sumeq1 15039 . . 3 (𝑥 = 𝐴 → Σ𝑘𝑥 𝐵 = Σ𝑘𝐴 𝐵)
87breq2d 5070 . 2 (𝑥 = 𝐴 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝐴 𝐵))
9 z0even 15710 . . . 4 2 ∥ 0
10 sum0 15072 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
119, 10breqtrri 5085 . . 3 2 ∥ Σ𝑘 ∈ ∅ 𝐵
1211a1i 11 . 2 (𝜑 → 2 ∥ Σ𝑘 ∈ ∅ 𝐵)
13 2z 12008 . . . . . . . 8 2 ∈ ℤ
1413a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 2 ∈ ℤ)
15 sumeven.a . . . . . . . . 9 (𝜑𝐴 ∈ Fin)
16 ssfi 8732 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
1716expcom 416 . . . . . . . . . 10 (𝑦𝐴 → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
1817adantr 483 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
1915, 18mpan9 509 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
20 simpll 765 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
21 ssel 3960 . . . . . . . . . . . 12 (𝑦𝐴 → (𝑘𝑦𝑘𝐴))
2221adantr 483 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘𝑦𝑘𝐴))
2322adantl 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘𝑦𝑘𝐴))
2423imp 409 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
25 sumeven.b . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
2620, 24, 25syl2anc 586 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
2719, 26fsumzcl 15086 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℤ)
28 eldifi 4102 . . . . . . . . . 10 (𝑧 ∈ (𝐴𝑦) → 𝑧𝐴)
2928adantl 484 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝐴)
3029adantl 484 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
3125adantlr 713 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
3231ralrimiva 3182 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℤ)
33 rspcsbela 4386 . . . . . . . 8 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3430, 32, 33syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3514, 27, 343jca 1124 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ))
3635adantr 483 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ))
37 sumeven.e . . . . . . . . . 10 ((𝜑𝑘𝐴) → 2 ∥ 𝐵)
3837ralrimiva 3182 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 2 ∥ 𝐵)
39 nfcv 2977 . . . . . . . . . . 11 𝑘2
40 nfcv 2977 . . . . . . . . . . 11 𝑘
41 nfcsb1v 3906 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4239, 40, 41nfbr 5105 . . . . . . . . . 10 𝑘2 ∥ 𝑧 / 𝑘𝐵
43 csbeq1a 3896 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4443breq2d 5070 . . . . . . . . . 10 (𝑘 = 𝑧 → (2 ∥ 𝐵 ↔ 2 ∥ 𝑧 / 𝑘𝐵))
4542, 44rspc 3610 . . . . . . . . 9 (𝑧𝐴 → (∀𝑘𝐴 2 ∥ 𝐵 → 2 ∥ 𝑧 / 𝑘𝐵))
4628, 38, 45syl2imc 41 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐴𝑦) → 2 ∥ 𝑧 / 𝑘𝐵))
4746a1d 25 . . . . . . 7 (𝜑 → (𝑦𝐴 → (𝑧 ∈ (𝐴𝑦) → 2 ∥ 𝑧 / 𝑘𝐵)))
4847imp32 421 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 2 ∥ 𝑧 / 𝑘𝐵)
4948anim1ci 617 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∥ Σ𝑘𝑦 𝐵 ∧ 2 ∥ 𝑧 / 𝑘𝐵))
50 dvds2add 15637 . . . . 5 ((2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ) → ((2 ∥ Σ𝑘𝑦 𝐵 ∧ 2 ∥ 𝑧 / 𝑘𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
5136, 49, 50sylc 65 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
52 vex 3497 . . . . . . 7 𝑧 ∈ V
5352a1i 11 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ V)
54 eldif 3945 . . . . . . . . 9 (𝑧 ∈ (𝐴𝑦) ↔ (𝑧𝐴 ∧ ¬ 𝑧𝑦))
55 df-nel 3124 . . . . . . . . . 10 (𝑧𝑦 ↔ ¬ 𝑧𝑦)
5655biimpri 230 . . . . . . . . 9 𝑧𝑦𝑧𝑦)
5754, 56simplbiim 507 . . . . . . . 8 (𝑧 ∈ (𝐴𝑦) → 𝑧𝑦)
5857adantl 484 . . . . . . 7 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝑦)
5958adantl 484 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝑦)
60 simpll 765 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
61 elun 4124 . . . . . . . . . . 11 (𝑘 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑘𝑦𝑘 ∈ {𝑧}))
6222com12 32 . . . . . . . . . . . . 13 (𝑘𝑦 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
63 elsni 4577 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑧} → 𝑘 = 𝑧)
64 eleq1w 2895 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
6529, 64syl5ibr 248 . . . . . . . . . . . . . 14 (𝑘 = 𝑧 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6663, 65syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ {𝑧} → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6762, 66jaoi 853 . . . . . . . . . . . 12 ((𝑘𝑦𝑘 ∈ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6867com12 32 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → ((𝑘𝑦𝑘 ∈ {𝑧}) → 𝑘𝐴))
6961, 68syl5bi 244 . . . . . . . . . 10 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
7069adantl 484 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
7170imp 409 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
7260, 71, 25syl2anc 586 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℤ)
7372ralrimiva 3182 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
74 fsumsplitsnun 15104 . . . . . 6 ((𝑦 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝑦) ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7519, 53, 59, 73, 74syl121anc 1371 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7675adantr 483 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7751, 76breqtrrd 5086 . . 3 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
7877ex 415 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 → 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
792, 4, 6, 8, 12, 78, 15findcard2d 8754 1 (𝜑 → 2 ∥ Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wnel 3123  wral 3138  Vcvv 3494  csb 3882  cdif 3932  cun 3933  wss 3935  c0 4290  {csn 4560   class class class wbr 5058  (class class class)co 7150  Fincfn 8503  0cc0 10531   + caddc 10534  2c2 11686  cz 11975  Σcsu 15036  cdvds 15601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-dvds 15602
This theorem is referenced by:  vtxdgoddnumeven  27329
  Copyright terms: Public domain W3C validator