MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumeven Structured version   Visualization version   GIF version

Theorem sumeven 16435
Description: If every term in a sum is even, then so is the sum. (Contributed by AV, 14-Aug-2021.)
Hypotheses
Ref Expression
sumeven.a (𝜑𝐴 ∈ Fin)
sumeven.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
sumeven.e ((𝜑𝑘𝐴) → 2 ∥ 𝐵)
Assertion
Ref Expression
sumeven (𝜑 → 2 ∥ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumeven
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 15737 . . 3 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
21breq2d 5178 . 2 (𝑥 = ∅ → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ ∅ 𝐵))
3 sumeq1 15737 . . 3 (𝑥 = 𝑦 → Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
43breq2d 5178 . 2 (𝑥 = 𝑦 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝑦 𝐵))
5 sumeq1 15737 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
65breq2d 5178 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
7 sumeq1 15737 . . 3 (𝑥 = 𝐴 → Σ𝑘𝑥 𝐵 = Σ𝑘𝐴 𝐵)
87breq2d 5178 . 2 (𝑥 = 𝐴 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝐴 𝐵))
9 z0even 16415 . . . 4 2 ∥ 0
10 sum0 15769 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
119, 10breqtrri 5193 . . 3 2 ∥ Σ𝑘 ∈ ∅ 𝐵
1211a1i 11 . 2 (𝜑 → 2 ∥ Σ𝑘 ∈ ∅ 𝐵)
13 2z 12675 . . . . . . . 8 2 ∈ ℤ
1413a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 2 ∈ ℤ)
15 sumeven.a . . . . . . . . 9 (𝜑𝐴 ∈ Fin)
16 ssfi 9240 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
1716expcom 413 . . . . . . . . . 10 (𝑦𝐴 → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
1817adantr 480 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
1915, 18mpan9 506 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
20 simpll 766 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
21 ssel 4002 . . . . . . . . . . . 12 (𝑦𝐴 → (𝑘𝑦𝑘𝐴))
2221adantr 480 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘𝑦𝑘𝐴))
2322adantl 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘𝑦𝑘𝐴))
2423imp 406 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
25 sumeven.b . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
2620, 24, 25syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
2719, 26fsumzcl 15783 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℤ)
28 eldifi 4154 . . . . . . . . . 10 (𝑧 ∈ (𝐴𝑦) → 𝑧𝐴)
2928adantl 481 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝐴)
3029adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
3125adantlr 714 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
3231ralrimiva 3152 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℤ)
33 rspcsbela 4461 . . . . . . . 8 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3430, 32, 33syl2anc 583 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3514, 27, 343jca 1128 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ))
3635adantr 480 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ))
37 sumeven.e . . . . . . . . . 10 ((𝜑𝑘𝐴) → 2 ∥ 𝐵)
3837ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 2 ∥ 𝐵)
39 nfcv 2908 . . . . . . . . . . 11 𝑘2
40 nfcv 2908 . . . . . . . . . . 11 𝑘
41 nfcsb1v 3946 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4239, 40, 41nfbr 5213 . . . . . . . . . 10 𝑘2 ∥ 𝑧 / 𝑘𝐵
43 csbeq1a 3935 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4443breq2d 5178 . . . . . . . . . 10 (𝑘 = 𝑧 → (2 ∥ 𝐵 ↔ 2 ∥ 𝑧 / 𝑘𝐵))
4542, 44rspc 3623 . . . . . . . . 9 (𝑧𝐴 → (∀𝑘𝐴 2 ∥ 𝐵 → 2 ∥ 𝑧 / 𝑘𝐵))
4628, 38, 45syl2imc 41 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐴𝑦) → 2 ∥ 𝑧 / 𝑘𝐵))
4746a1d 25 . . . . . . 7 (𝜑 → (𝑦𝐴 → (𝑧 ∈ (𝐴𝑦) → 2 ∥ 𝑧 / 𝑘𝐵)))
4847imp32 418 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 2 ∥ 𝑧 / 𝑘𝐵)
4948anim1ci 615 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∥ Σ𝑘𝑦 𝐵 ∧ 2 ∥ 𝑧 / 𝑘𝐵))
50 dvds2add 16338 . . . . 5 ((2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ) → ((2 ∥ Σ𝑘𝑦 𝐵 ∧ 2 ∥ 𝑧 / 𝑘𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
5136, 49, 50sylc 65 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
52 vex 3492 . . . . . . 7 𝑧 ∈ V
5352a1i 11 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ V)
54 eldif 3986 . . . . . . . . 9 (𝑧 ∈ (𝐴𝑦) ↔ (𝑧𝐴 ∧ ¬ 𝑧𝑦))
55 df-nel 3053 . . . . . . . . . 10 (𝑧𝑦 ↔ ¬ 𝑧𝑦)
5655biimpri 228 . . . . . . . . 9 𝑧𝑦𝑧𝑦)
5754, 56simplbiim 504 . . . . . . . 8 (𝑧 ∈ (𝐴𝑦) → 𝑧𝑦)
5857adantl 481 . . . . . . 7 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝑦)
5958adantl 481 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝑦)
60 simpll 766 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
61 elun 4176 . . . . . . . . . . 11 (𝑘 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑘𝑦𝑘 ∈ {𝑧}))
6222com12 32 . . . . . . . . . . . . 13 (𝑘𝑦 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
63 elsni 4665 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑧} → 𝑘 = 𝑧)
64 eleq1w 2827 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
6529, 64imbitrrid 246 . . . . . . . . . . . . . 14 (𝑘 = 𝑧 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6663, 65syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ {𝑧} → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6762, 66jaoi 856 . . . . . . . . . . . 12 ((𝑘𝑦𝑘 ∈ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6867com12 32 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → ((𝑘𝑦𝑘 ∈ {𝑧}) → 𝑘𝐴))
6961, 68biimtrid 242 . . . . . . . . . 10 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
7069adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
7170imp 406 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
7260, 71, 25syl2anc 583 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℤ)
7372ralrimiva 3152 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
74 fsumsplitsnun 15803 . . . . . 6 ((𝑦 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝑦) ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7519, 53, 59, 73, 74syl121anc 1375 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7675adantr 480 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7751, 76breqtrrd 5194 . . 3 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
7877ex 412 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 → 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
792, 4, 6, 8, 12, 78, 15findcard2d 9232 1 (𝜑 → 2 ∥ Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wnel 3052  wral 3067  Vcvv 3488  csb 3921  cdif 3973  cun 3974  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  (class class class)co 7448  Fincfn 9003  0cc0 11184   + caddc 11187  2c2 12348  cz 12639  Σcsu 15734  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303
This theorem is referenced by:  vtxdgoddnumeven  29589
  Copyright terms: Public domain W3C validator