MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpco Structured version   Visualization version   GIF version

Theorem cnpco 23203
Description: The composition of a function 𝐹 continuous at 𝑃 with a function continuous at (𝐹𝑃) is continuous at 𝑃. Proposition 2 of [BourbakiTop1] p. I.9. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
cnpco ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → (𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃))

Proof of Theorem cnpco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnptop1 23178 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
21adantr 480 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝐽 ∈ Top)
3 cnptop2 23179 . . . 4 (𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)) → 𝐿 ∈ Top)
43adantl 481 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝐿 ∈ Top)
5 eqid 2735 . . . . 5 𝐽 = 𝐽
65cnprcl 23181 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 𝐽)
76adantr 480 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝑃 𝐽)
82, 4, 73jca 1128 . 2 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → (𝐽 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝑃 𝐽))
9 eqid 2735 . . . . . 6 𝐾 = 𝐾
10 eqid 2735 . . . . . 6 𝐿 = 𝐿
119, 10cnpf 23183 . . . . 5 (𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)) → 𝐺: 𝐾 𝐿)
1211adantl 481 . . . 4 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝐺: 𝐾 𝐿)
135, 9cnpf 23183 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹: 𝐽 𝐾)
1413adantr 480 . . . 4 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝐹: 𝐽 𝐾)
15 fco 6729 . . . 4 ((𝐺: 𝐾 𝐿𝐹: 𝐽 𝐾) → (𝐺𝐹): 𝐽 𝐿)
1612, 14, 15syl2anc 584 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → (𝐺𝐹): 𝐽 𝐿)
17 simplr 768 . . . . . . 7 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))
18 simprl 770 . . . . . . 7 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → 𝑧𝐿)
19 fvco3 6977 . . . . . . . . . 10 ((𝐹: 𝐽 𝐾𝑃 𝐽) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
2014, 7, 19syl2anc 584 . . . . . . . . 9 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
2120adantr 480 . . . . . . . 8 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
22 simprr 772 . . . . . . . 8 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ((𝐺𝐹)‘𝑃) ∈ 𝑧)
2321, 22eqeltrrd 2835 . . . . . . 7 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → (𝐺‘(𝐹𝑃)) ∈ 𝑧)
24 cnpimaex 23192 . . . . . . 7 ((𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)) ∧ 𝑧𝐿 ∧ (𝐺‘(𝐹𝑃)) ∈ 𝑧) → ∃𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))
2517, 18, 23, 24syl3anc 1373 . . . . . 6 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ∃𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))
26 simplll 774 . . . . . . . 8 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
27 simprl 770 . . . . . . . 8 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝑦𝐾)
28 simprrl 780 . . . . . . . 8 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (𝐹𝑃) ∈ 𝑦)
29 cnpimaex 23192 . . . . . . . 8 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
3026, 27, 28, 29syl3anc 1373 . . . . . . 7 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
31 imaco 6240 . . . . . . . . . . 11 ((𝐺𝐹) “ 𝑥) = (𝐺 “ (𝐹𝑥))
32 imass2 6089 . . . . . . . . . . 11 ((𝐹𝑥) ⊆ 𝑦 → (𝐺 “ (𝐹𝑥)) ⊆ (𝐺𝑦))
3331, 32eqsstrid 3997 . . . . . . . . . 10 ((𝐹𝑥) ⊆ 𝑦 → ((𝐺𝐹) “ 𝑥) ⊆ (𝐺𝑦))
34 simprrr 781 . . . . . . . . . 10 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (𝐺𝑦) ⊆ 𝑧)
35 sstr2 3965 . . . . . . . . . 10 (((𝐺𝐹) “ 𝑥) ⊆ (𝐺𝑦) → ((𝐺𝑦) ⊆ 𝑧 → ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
3633, 34, 35syl2imc 41 . . . . . . . . 9 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ((𝐹𝑥) ⊆ 𝑦 → ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
3736anim2d 612 . . . . . . . 8 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
3837reximdv 3155 . . . . . . 7 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
3930, 38mpd 15 . . . . . 6 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
4025, 39rexlimddv 3147 . . . . 5 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
4140expr 456 . . . 4 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ 𝑧𝐿) → (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
4241ralrimiva 3132 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
4316, 42jca 511 . 2 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))))
445, 10iscnp2 23175 . 2 ((𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝑃 𝐽) ∧ ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))))
458, 43, 44sylanbrc 583 1 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → (𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926   cuni 4883  cima 5657  ccom 5658  wf 6526  cfv 6530  (class class class)co 7403  Topctop 22829   CnP ccnp 23161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-map 8840  df-top 22830  df-topon 22847  df-cnp 23164
This theorem is referenced by:  limccnp  25842  limccnp2  25843  efrlim  26929  efrlimOLD  26930
  Copyright terms: Public domain W3C validator