MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpco Structured version   Visualization version   GIF version

Theorem cnpco 21579
Description: The composition of a function 𝐹 continuous at 𝑃 with a function continuous at (𝐹𝑃) is continuous at 𝑃. Proposition 2 of [BourbakiTop1] p. I.9. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
cnpco ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → (𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃))

Proof of Theorem cnpco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnptop1 21554 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
21adantr 473 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝐽 ∈ Top)
3 cnptop2 21555 . . . 4 (𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)) → 𝐿 ∈ Top)
43adantl 474 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝐿 ∈ Top)
5 eqid 2778 . . . . 5 𝐽 = 𝐽
65cnprcl 21557 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 𝐽)
76adantr 473 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝑃 𝐽)
82, 4, 73jca 1108 . 2 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → (𝐽 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝑃 𝐽))
9 eqid 2778 . . . . . 6 𝐾 = 𝐾
10 eqid 2778 . . . . . 6 𝐿 = 𝐿
119, 10cnpf 21559 . . . . 5 (𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)) → 𝐺: 𝐾 𝐿)
1211adantl 474 . . . 4 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝐺: 𝐾 𝐿)
135, 9cnpf 21559 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹: 𝐽 𝐾)
1413adantr 473 . . . 4 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝐹: 𝐽 𝐾)
15 fco 6361 . . . 4 ((𝐺: 𝐾 𝐿𝐹: 𝐽 𝐾) → (𝐺𝐹): 𝐽 𝐿)
1612, 14, 15syl2anc 576 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → (𝐺𝐹): 𝐽 𝐿)
17 simplr 756 . . . . . . 7 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))
18 simprl 758 . . . . . . 7 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → 𝑧𝐿)
19 fvco3 6588 . . . . . . . . . 10 ((𝐹: 𝐽 𝐾𝑃 𝐽) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
2014, 7, 19syl2anc 576 . . . . . . . . 9 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
2120adantr 473 . . . . . . . 8 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
22 simprr 760 . . . . . . . 8 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ((𝐺𝐹)‘𝑃) ∈ 𝑧)
2321, 22eqeltrrd 2867 . . . . . . 7 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → (𝐺‘(𝐹𝑃)) ∈ 𝑧)
24 cnpimaex 21568 . . . . . . 7 ((𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)) ∧ 𝑧𝐿 ∧ (𝐺‘(𝐹𝑃)) ∈ 𝑧) → ∃𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))
2517, 18, 23, 24syl3anc 1351 . . . . . 6 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ∃𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))
26 simplll 762 . . . . . . . 8 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
27 simprl 758 . . . . . . . 8 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝑦𝐾)
28 simprrl 768 . . . . . . . 8 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (𝐹𝑃) ∈ 𝑦)
29 cnpimaex 21568 . . . . . . . 8 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
3026, 27, 28, 29syl3anc 1351 . . . . . . 7 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
31 imaco 5943 . . . . . . . . . . 11 ((𝐺𝐹) “ 𝑥) = (𝐺 “ (𝐹𝑥))
32 imass2 5805 . . . . . . . . . . 11 ((𝐹𝑥) ⊆ 𝑦 → (𝐺 “ (𝐹𝑥)) ⊆ (𝐺𝑦))
3331, 32syl5eqss 3905 . . . . . . . . . 10 ((𝐹𝑥) ⊆ 𝑦 → ((𝐺𝐹) “ 𝑥) ⊆ (𝐺𝑦))
34 simprrr 769 . . . . . . . . . 10 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (𝐺𝑦) ⊆ 𝑧)
35 sstr2 3865 . . . . . . . . . 10 (((𝐺𝐹) “ 𝑥) ⊆ (𝐺𝑦) → ((𝐺𝑦) ⊆ 𝑧 → ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
3633, 34, 35syl2imc 41 . . . . . . . . 9 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ((𝐹𝑥) ⊆ 𝑦 → ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
3736anim2d 602 . . . . . . . 8 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
3837reximdv 3218 . . . . . . 7 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
3930, 38mpd 15 . . . . . 6 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
4025, 39rexlimddv 3236 . . . . 5 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
4140expr 449 . . . 4 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ 𝑧𝐿) → (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
4241ralrimiva 3132 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
4316, 42jca 504 . 2 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))))
445, 10iscnp2 21551 . 2 ((𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝑃 𝐽) ∧ ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))))
458, 43, 44sylanbrc 575 1 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → (𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3088  wrex 3089  wss 3829   cuni 4712  cima 5410  ccom 5411  wf 6184  cfv 6188  (class class class)co 6976  Topctop 21205   CnP ccnp 21537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-1st 7501  df-2nd 7502  df-map 8208  df-top 21206  df-topon 21223  df-cnp 21540
This theorem is referenced by:  limccnp  24192  limccnp2  24193  efrlim  25249
  Copyright terms: Public domain W3C validator