MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpco Structured version   Visualization version   GIF version

Theorem cnpco 23275
Description: The composition of a function 𝐹 continuous at 𝑃 with a function continuous at (𝐹𝑃) is continuous at 𝑃. Proposition 2 of [BourbakiTop1] p. I.9. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
cnpco ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → (𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃))

Proof of Theorem cnpco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnptop1 23250 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
21adantr 480 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝐽 ∈ Top)
3 cnptop2 23251 . . . 4 (𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)) → 𝐿 ∈ Top)
43adantl 481 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝐿 ∈ Top)
5 eqid 2737 . . . . 5 𝐽 = 𝐽
65cnprcl 23253 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 𝐽)
76adantr 480 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝑃 𝐽)
82, 4, 73jca 1129 . 2 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → (𝐽 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝑃 𝐽))
9 eqid 2737 . . . . . 6 𝐾 = 𝐾
10 eqid 2737 . . . . . 6 𝐿 = 𝐿
119, 10cnpf 23255 . . . . 5 (𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)) → 𝐺: 𝐾 𝐿)
1211adantl 481 . . . 4 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝐺: 𝐾 𝐿)
135, 9cnpf 23255 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹: 𝐽 𝐾)
1413adantr 480 . . . 4 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → 𝐹: 𝐽 𝐾)
15 fco 6760 . . . 4 ((𝐺: 𝐾 𝐿𝐹: 𝐽 𝐾) → (𝐺𝐹): 𝐽 𝐿)
1612, 14, 15syl2anc 584 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → (𝐺𝐹): 𝐽 𝐿)
17 simplr 769 . . . . . . 7 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)))
18 simprl 771 . . . . . . 7 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → 𝑧𝐿)
19 fvco3 7008 . . . . . . . . . 10 ((𝐹: 𝐽 𝐾𝑃 𝐽) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
2014, 7, 19syl2anc 584 . . . . . . . . 9 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
2120adantr 480 . . . . . . . 8 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ((𝐺𝐹)‘𝑃) = (𝐺‘(𝐹𝑃)))
22 simprr 773 . . . . . . . 8 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ((𝐺𝐹)‘𝑃) ∈ 𝑧)
2321, 22eqeltrrd 2842 . . . . . . 7 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → (𝐺‘(𝐹𝑃)) ∈ 𝑧)
24 cnpimaex 23264 . . . . . . 7 ((𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃)) ∧ 𝑧𝐿 ∧ (𝐺‘(𝐹𝑃)) ∈ 𝑧) → ∃𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))
2517, 18, 23, 24syl3anc 1373 . . . . . 6 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ∃𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))
26 simplll 775 . . . . . . . 8 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
27 simprl 771 . . . . . . . 8 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → 𝑦𝐾)
28 simprrl 781 . . . . . . . 8 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (𝐹𝑃) ∈ 𝑦)
29 cnpimaex 23264 . . . . . . . 8 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
3026, 27, 28, 29syl3anc 1373 . . . . . . 7 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))
31 imaco 6271 . . . . . . . . . . 11 ((𝐺𝐹) “ 𝑥) = (𝐺 “ (𝐹𝑥))
32 imass2 6120 . . . . . . . . . . 11 ((𝐹𝑥) ⊆ 𝑦 → (𝐺 “ (𝐹𝑥)) ⊆ (𝐺𝑦))
3331, 32eqsstrid 4022 . . . . . . . . . 10 ((𝐹𝑥) ⊆ 𝑦 → ((𝐺𝐹) “ 𝑥) ⊆ (𝐺𝑦))
34 simprrr 782 . . . . . . . . . 10 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (𝐺𝑦) ⊆ 𝑧)
35 sstr2 3990 . . . . . . . . . 10 (((𝐺𝐹) “ 𝑥) ⊆ (𝐺𝑦) → ((𝐺𝑦) ⊆ 𝑧 → ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
3633, 34, 35syl2imc 41 . . . . . . . . 9 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ((𝐹𝑥) ⊆ 𝑦 → ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
3736anim2d 612 . . . . . . . 8 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
3837reximdv 3170 . . . . . . 7 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
3930, 38mpd 15 . . . . . 6 ((((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) ∧ (𝑦𝐾 ∧ ((𝐹𝑃) ∈ 𝑦 ∧ (𝐺𝑦) ⊆ 𝑧))) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
4025, 39rexlimddv 3161 . . . . 5 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ (𝑧𝐿 ∧ ((𝐺𝐹)‘𝑃) ∈ 𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))
4140expr 456 . . . 4 (((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) ∧ 𝑧𝐿) → (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
4241ralrimiva 3146 . . 3 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))
4316, 42jca 511 . 2 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧))))
445, 10iscnp2 23247 . 2 ((𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝑃 𝐽) ∧ ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑧𝐿 (((𝐺𝐹)‘𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ ((𝐺𝐹) “ 𝑥) ⊆ 𝑧)))))
458, 43, 44sylanbrc 583 1 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹𝑃))) → (𝐺𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951   cuni 4907  cima 5688  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  Topctop 22899   CnP ccnp 23233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-top 22900  df-topon 22917  df-cnp 23236
This theorem is referenced by:  limccnp  25926  limccnp2  25927  efrlim  27012  efrlimOLD  27013
  Copyright terms: Public domain W3C validator