|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mapfvd | Structured version Visualization version GIF version | ||
| Description: The value of a function that maps from 𝐵 to 𝐴. (Contributed by AV, 2-Feb-2023.) | 
| Ref | Expression | 
|---|---|
| mapfvd.m | ⊢ 𝑀 = (𝐴 ↑m 𝐵) | 
| mapfvd.f | ⊢ (𝜑 → 𝐹 ∈ 𝑀) | 
| mapfvd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| mapfvd | ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mapfvd.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑀) | |
| 2 | mapfvd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | elmapi 8889 | . . . 4 ⊢ (𝐹 ∈ (𝐴 ↑m 𝐵) → 𝐹:𝐵⟶𝐴) | |
| 4 | ffvelcdm 7101 | . . . . 5 ⊢ ((𝐹:𝐵⟶𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐴) | |
| 5 | 4 | expcom 413 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝐹:𝐵⟶𝐴 → (𝐹‘𝑋) ∈ 𝐴)) | 
| 6 | 2, 3, 5 | syl2imc 41 | . . 3 ⊢ (𝐹 ∈ (𝐴 ↑m 𝐵) → (𝜑 → (𝐹‘𝑋) ∈ 𝐴)) | 
| 7 | mapfvd.m | . . 3 ⊢ 𝑀 = (𝐴 ↑m 𝐵) | |
| 8 | 6, 7 | eleq2s 2859 | . 2 ⊢ (𝐹 ∈ 𝑀 → (𝜑 → (𝐹‘𝑋) ∈ 𝐴)) | 
| 9 | 1, 8 | mpcom 38 | 1 ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 | 
| This theorem is referenced by: fsuppind 42600 1arympt1 48559 rrx2pxel 48632 rrx2pyel 48633 | 
| Copyright terms: Public domain | W3C validator |