| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapfvd | Structured version Visualization version GIF version | ||
| Description: The value of a function that maps from 𝐵 to 𝐴. (Contributed by AV, 2-Feb-2023.) |
| Ref | Expression |
|---|---|
| mapfvd.m | ⊢ 𝑀 = (𝐴 ↑m 𝐵) |
| mapfvd.f | ⊢ (𝜑 → 𝐹 ∈ 𝑀) |
| mapfvd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mapfvd | ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapfvd.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑀) | |
| 2 | mapfvd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | elmapi 8825 | . . . 4 ⊢ (𝐹 ∈ (𝐴 ↑m 𝐵) → 𝐹:𝐵⟶𝐴) | |
| 4 | ffvelcdm 7056 | . . . . 5 ⊢ ((𝐹:𝐵⟶𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐴) | |
| 5 | 4 | expcom 413 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝐹:𝐵⟶𝐴 → (𝐹‘𝑋) ∈ 𝐴)) |
| 6 | 2, 3, 5 | syl2imc 41 | . . 3 ⊢ (𝐹 ∈ (𝐴 ↑m 𝐵) → (𝜑 → (𝐹‘𝑋) ∈ 𝐴)) |
| 7 | mapfvd.m | . . 3 ⊢ 𝑀 = (𝐴 ↑m 𝐵) | |
| 8 | 6, 7 | eleq2s 2847 | . 2 ⊢ (𝐹 ∈ 𝑀 → (𝜑 → (𝐹‘𝑋) ∈ 𝐴)) |
| 9 | 1, 8 | mpcom 38 | 1 ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 |
| This theorem is referenced by: fsuppind 42585 1arympt1 48631 rrx2pxel 48704 rrx2pyel 48705 |
| Copyright terms: Public domain | W3C validator |