Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mapfvd | Structured version Visualization version GIF version |
Description: The value of a function that maps from 𝐵 to 𝐴. (Contributed by AV, 2-Feb-2023.) |
Ref | Expression |
---|---|
mapfvd.m | ⊢ 𝑀 = (𝐴 ↑m 𝐵) |
mapfvd.f | ⊢ (𝜑 → 𝐹 ∈ 𝑀) |
mapfvd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
mapfvd | ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfvd.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑀) | |
2 | mapfvd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | elmapi 8595 | . . . 4 ⊢ (𝐹 ∈ (𝐴 ↑m 𝐵) → 𝐹:𝐵⟶𝐴) | |
4 | ffvelrn 6941 | . . . . 5 ⊢ ((𝐹:𝐵⟶𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐴) | |
5 | 4 | expcom 413 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝐹:𝐵⟶𝐴 → (𝐹‘𝑋) ∈ 𝐴)) |
6 | 2, 3, 5 | syl2imc 41 | . . 3 ⊢ (𝐹 ∈ (𝐴 ↑m 𝐵) → (𝜑 → (𝐹‘𝑋) ∈ 𝐴)) |
7 | mapfvd.m | . . 3 ⊢ 𝑀 = (𝐴 ↑m 𝐵) | |
8 | 6, 7 | eleq2s 2857 | . 2 ⊢ (𝐹 ∈ 𝑀 → (𝜑 → (𝐹‘𝑋) ∈ 𝐴)) |
9 | 1, 8 | mpcom 38 | 1 ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 |
This theorem is referenced by: fsuppind 40202 1arympt1 45872 rrx2pxel 45945 rrx2pyel 45946 |
Copyright terms: Public domain | W3C validator |