MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankpwi Structured version   Visualization version   GIF version

Theorem rankpwi 9752
Description: The rank of a power set. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 3-Jun-2013.)
Assertion
Ref Expression
rankpwi (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))

Proof of Theorem rankpwi
StepHypRef Expression
1 rankidn 9751 . . . 4 (𝐴 (𝑅1 “ On) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))
2 rankon 9724 . . . . . . 7 (rank‘𝐴) ∈ On
3 r1suc 9699 . . . . . . 7 ((rank‘𝐴) ∈ On → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
42, 3ax-mp 5 . . . . . 6 (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))
54eleq2i 2820 . . . . 5 (𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) ↔ 𝒫 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)))
6 elpwi 4566 . . . . . 6 (𝒫 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) → 𝒫 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
7 pwidg 4579 . . . . . 6 (𝐴 (𝑅1 “ On) → 𝐴 ∈ 𝒫 𝐴)
8 ssel 3937 . . . . . 6 (𝒫 𝐴 ⊆ (𝑅1‘(rank‘𝐴)) → (𝐴 ∈ 𝒫 𝐴𝐴 ∈ (𝑅1‘(rank‘𝐴))))
96, 7, 8syl2imc 41 . . . . 5 (𝐴 (𝑅1 “ On) → (𝒫 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
105, 9biimtrid 242 . . . 4 (𝐴 (𝑅1 “ On) → (𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
111, 10mtod 198 . . 3 (𝐴 (𝑅1 “ On) → ¬ 𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
12 r1rankidb 9733 . . . . . . 7 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
1312sspwd 4572 . . . . . 6 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)))
1413, 4sseqtrrdi 3985 . . . . 5 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))
15 fvex 6853 . . . . . 6 (𝑅1‘suc (rank‘𝐴)) ∈ V
1615elpw2 5284 . . . . 5 (𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴)) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))
1714, 16sylibr 234 . . . 4 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴)))
182onsuci 7794 . . . . 5 suc (rank‘𝐴) ∈ On
19 r1suc 9699 . . . . 5 (suc (rank‘𝐴) ∈ On → (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴)))
2018, 19ax-mp 5 . . . 4 (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴))
2117, 20eleqtrrdi 2839 . . 3 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)))
22 pwwf 9736 . . . 4 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
23 rankr1c 9750 . . . 4 (𝒫 𝐴 (𝑅1 “ On) → (suc (rank‘𝐴) = (rank‘𝒫 𝐴) ↔ (¬ 𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) ∧ 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)))))
2422, 23sylbi 217 . . 3 (𝐴 (𝑅1 “ On) → (suc (rank‘𝐴) = (rank‘𝒫 𝐴) ↔ (¬ 𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) ∧ 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)))))
2511, 21, 24mpbir2and 713 . 2 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) = (rank‘𝒫 𝐴))
2625eqcomd 2735 1 (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3911  𝒫 cpw 4559   cuni 4867  cima 5634  Oncon0 6320  suc csuc 6322  cfv 6499  𝑅1cr1 9691  rankcrnk 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-r1 9693  df-rank 9694
This theorem is referenced by:  rankpw  9772  r1pw  9774  r1pwcl  9776
  Copyright terms: Public domain W3C validator