Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankelb | Structured version Visualization version GIF version |
Description: The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankelb | ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1elssi 9494 | . . . . . 6 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → 𝐵 ⊆ ∪ (𝑅1 “ On)) | |
2 | 1 | sseld 3916 | . . . . 5 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ (𝑅1 “ On))) |
3 | rankidn 9511 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴))) | |
4 | 2, 3 | syl6 35 | . . . 4 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) |
5 | 4 | imp 406 | . . 3 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴))) |
6 | rankon 9484 | . . . . 5 ⊢ (rank‘𝐵) ∈ On | |
7 | rankon 9484 | . . . . 5 ⊢ (rank‘𝐴) ∈ On | |
8 | ontri1 6285 | . . . . 5 ⊢ (((rank‘𝐵) ∈ On ∧ (rank‘𝐴) ∈ On) → ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ (rank‘𝐵))) | |
9 | 6, 7, 8 | mp2an 688 | . . . 4 ⊢ ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ (rank‘𝐵)) |
10 | rankdmr1 9490 | . . . . . 6 ⊢ (rank‘𝐵) ∈ dom 𝑅1 | |
11 | rankdmr1 9490 | . . . . . 6 ⊢ (rank‘𝐴) ∈ dom 𝑅1 | |
12 | r1ord3g 9468 | . . . . . 6 ⊢ (((rank‘𝐵) ∈ dom 𝑅1 ∧ (rank‘𝐴) ∈ dom 𝑅1) → ((rank‘𝐵) ⊆ (rank‘𝐴) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)))) | |
13 | 10, 11, 12 | mp2an 688 | . . . . 5 ⊢ ((rank‘𝐵) ⊆ (rank‘𝐴) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴))) |
14 | r1rankidb 9493 | . . . . . 6 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵))) | |
15 | 14 | sselda 3917 | . . . . 5 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (𝑅1‘(rank‘𝐵))) |
16 | ssel 3910 | . . . . 5 ⊢ ((𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)) → (𝐴 ∈ (𝑅1‘(rank‘𝐵)) → 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) | |
17 | 13, 15, 16 | syl2imc 41 | . . . 4 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → ((rank‘𝐵) ⊆ (rank‘𝐴) → 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) |
18 | 9, 17 | syl5bir 242 | . . 3 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → (¬ (rank‘𝐴) ∈ (rank‘𝐵) → 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) |
19 | 5, 18 | mt3d 148 | . 2 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → (rank‘𝐴) ∈ (rank‘𝐵)) |
20 | 19 | ex 412 | 1 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 ∪ cuni 4836 dom cdm 5580 “ cima 5583 Oncon0 6251 ‘cfv 6418 𝑅1cr1 9451 rankcrnk 9452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 df-rank 9454 |
This theorem is referenced by: wfelirr 9514 rankval3b 9515 rankel 9528 rankunb 9539 rankuni2b 9542 rankcf 10464 |
Copyright terms: Public domain | W3C validator |