MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelb Structured version   Visualization version   GIF version

Theorem rankelb 9106
Description: The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankelb (𝐵 (𝑅1 “ On) → (𝐴𝐵 → (rank‘𝐴) ∈ (rank‘𝐵)))

Proof of Theorem rankelb
StepHypRef Expression
1 r1elssi 9087 . . . . . 6 (𝐵 (𝑅1 “ On) → 𝐵 (𝑅1 “ On))
21sseld 3894 . . . . 5 (𝐵 (𝑅1 “ On) → (𝐴𝐵𝐴 (𝑅1 “ On)))
3 rankidn 9104 . . . . 5 (𝐴 (𝑅1 “ On) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))
42, 3syl6 35 . . . 4 (𝐵 (𝑅1 “ On) → (𝐴𝐵 → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
54imp 407 . . 3 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))
6 rankon 9077 . . . . 5 (rank‘𝐵) ∈ On
7 rankon 9077 . . . . 5 (rank‘𝐴) ∈ On
8 ontri1 6107 . . . . 5 (((rank‘𝐵) ∈ On ∧ (rank‘𝐴) ∈ On) → ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ (rank‘𝐵)))
96, 7, 8mp2an 688 . . . 4 ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ (rank‘𝐵))
10 rankdmr1 9083 . . . . . 6 (rank‘𝐵) ∈ dom 𝑅1
11 rankdmr1 9083 . . . . . 6 (rank‘𝐴) ∈ dom 𝑅1
12 r1ord3g 9061 . . . . . 6 (((rank‘𝐵) ∈ dom 𝑅1 ∧ (rank‘𝐴) ∈ dom 𝑅1) → ((rank‘𝐵) ⊆ (rank‘𝐴) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴))))
1310, 11, 12mp2an 688 . . . . 5 ((rank‘𝐵) ⊆ (rank‘𝐴) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)))
14 r1rankidb 9086 . . . . . 6 (𝐵 (𝑅1 “ On) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
1514sselda 3895 . . . . 5 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅1‘(rank‘𝐵)))
16 ssel 3889 . . . . 5 ((𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)) → (𝐴 ∈ (𝑅1‘(rank‘𝐵)) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
1713, 15, 16syl2imc 41 . . . 4 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → ((rank‘𝐵) ⊆ (rank‘𝐴) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
189, 17syl5bir 244 . . 3 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → (¬ (rank‘𝐴) ∈ (rank‘𝐵) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
195, 18mt3d 150 . 2 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → (rank‘𝐴) ∈ (rank‘𝐵))
2019ex 413 1 (𝐵 (𝑅1 “ On) → (𝐴𝐵 → (rank‘𝐴) ∈ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wcel 2083  wss 3865   cuni 4751  dom cdm 5450  cima 5453  Oncon0 6073  cfv 6232  𝑅1cr1 9044  rankcrnk 9045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-om 7444  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-r1 9046  df-rank 9047
This theorem is referenced by:  wfelirr  9107  rankval3b  9108  rankel  9121  rankunb  9132  rankuni2b  9135  rankcf  10052
  Copyright terms: Public domain W3C validator