MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelb Structured version   Visualization version   GIF version

Theorem rankelb 9720
Description: The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankelb (𝐵 (𝑅1 “ On) → (𝐴𝐵 → (rank‘𝐴) ∈ (rank‘𝐵)))

Proof of Theorem rankelb
StepHypRef Expression
1 r1elssi 9701 . . . . . 6 (𝐵 (𝑅1 “ On) → 𝐵 (𝑅1 “ On))
21sseld 3934 . . . . 5 (𝐵 (𝑅1 “ On) → (𝐴𝐵𝐴 (𝑅1 “ On)))
3 rankidn 9718 . . . . 5 (𝐴 (𝑅1 “ On) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))
42, 3syl6 35 . . . 4 (𝐵 (𝑅1 “ On) → (𝐴𝐵 → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
54imp 406 . . 3 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))
6 rankon 9691 . . . . 5 (rank‘𝐵) ∈ On
7 rankon 9691 . . . . 5 (rank‘𝐴) ∈ On
8 ontri1 6341 . . . . 5 (((rank‘𝐵) ∈ On ∧ (rank‘𝐴) ∈ On) → ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ (rank‘𝐵)))
96, 7, 8mp2an 692 . . . 4 ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ (rank‘𝐵))
10 rankdmr1 9697 . . . . . 6 (rank‘𝐵) ∈ dom 𝑅1
11 rankdmr1 9697 . . . . . 6 (rank‘𝐴) ∈ dom 𝑅1
12 r1ord3g 9675 . . . . . 6 (((rank‘𝐵) ∈ dom 𝑅1 ∧ (rank‘𝐴) ∈ dom 𝑅1) → ((rank‘𝐵) ⊆ (rank‘𝐴) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴))))
1310, 11, 12mp2an 692 . . . . 5 ((rank‘𝐵) ⊆ (rank‘𝐴) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)))
14 r1rankidb 9700 . . . . . 6 (𝐵 (𝑅1 “ On) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
1514sselda 3935 . . . . 5 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅1‘(rank‘𝐵)))
16 ssel 3929 . . . . 5 ((𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)) → (𝐴 ∈ (𝑅1‘(rank‘𝐵)) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
1713, 15, 16syl2imc 41 . . . 4 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → ((rank‘𝐵) ⊆ (rank‘𝐴) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
189, 17biimtrrid 243 . . 3 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → (¬ (rank‘𝐴) ∈ (rank‘𝐵) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
195, 18mt3d 148 . 2 ((𝐵 (𝑅1 “ On) ∧ 𝐴𝐵) → (rank‘𝐴) ∈ (rank‘𝐵))
2019ex 412 1 (𝐵 (𝑅1 “ On) → (𝐴𝐵 → (rank‘𝐴) ∈ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wss 3903   cuni 4858  dom cdm 5619  cima 5622  Oncon0 6307  cfv 6482  𝑅1cr1 9658  rankcrnk 9659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660  df-rank 9661
This theorem is referenced by:  wfelirr  9721  rankval3b  9722  rankel  9735  rankunb  9746  rankuni2b  9749  rankcf  10671  rankrelp  44954
  Copyright terms: Public domain W3C validator