| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankelb | Structured version Visualization version GIF version | ||
| Description: The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankelb | ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1elssi 9819 | . . . . . 6 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → 𝐵 ⊆ ∪ (𝑅1 “ On)) | |
| 2 | 1 | sseld 3957 | . . . . 5 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ (𝑅1 “ On))) |
| 3 | rankidn 9836 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴))) | |
| 4 | 2, 3 | syl6 35 | . . . 4 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) |
| 5 | 4 | imp 406 | . . 3 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴))) |
| 6 | rankon 9809 | . . . . 5 ⊢ (rank‘𝐵) ∈ On | |
| 7 | rankon 9809 | . . . . 5 ⊢ (rank‘𝐴) ∈ On | |
| 8 | ontri1 6386 | . . . . 5 ⊢ (((rank‘𝐵) ∈ On ∧ (rank‘𝐴) ∈ On) → ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ (rank‘𝐵))) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . 4 ⊢ ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ (rank‘𝐵)) |
| 10 | rankdmr1 9815 | . . . . . 6 ⊢ (rank‘𝐵) ∈ dom 𝑅1 | |
| 11 | rankdmr1 9815 | . . . . . 6 ⊢ (rank‘𝐴) ∈ dom 𝑅1 | |
| 12 | r1ord3g 9793 | . . . . . 6 ⊢ (((rank‘𝐵) ∈ dom 𝑅1 ∧ (rank‘𝐴) ∈ dom 𝑅1) → ((rank‘𝐵) ⊆ (rank‘𝐴) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)))) | |
| 13 | 10, 11, 12 | mp2an 692 | . . . . 5 ⊢ ((rank‘𝐵) ⊆ (rank‘𝐴) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴))) |
| 14 | r1rankidb 9818 | . . . . . 6 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵))) | |
| 15 | 14 | sselda 3958 | . . . . 5 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (𝑅1‘(rank‘𝐵))) |
| 16 | ssel 3952 | . . . . 5 ⊢ ((𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)) → (𝐴 ∈ (𝑅1‘(rank‘𝐵)) → 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) | |
| 17 | 13, 15, 16 | syl2imc 41 | . . . 4 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → ((rank‘𝐵) ⊆ (rank‘𝐴) → 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) |
| 18 | 9, 17 | biimtrrid 243 | . . 3 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → (¬ (rank‘𝐴) ∈ (rank‘𝐵) → 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) |
| 19 | 5, 18 | mt3d 148 | . 2 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → (rank‘𝐴) ∈ (rank‘𝐵)) |
| 20 | 19 | ex 412 | 1 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 dom cdm 5654 “ cima 5657 Oncon0 6352 ‘cfv 6531 𝑅1cr1 9776 rankcrnk 9777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-r1 9778 df-rank 9779 |
| This theorem is referenced by: wfelirr 9839 rankval3b 9840 rankel 9853 rankunb 9864 rankuni2b 9867 rankcf 10791 rankrelp 44985 |
| Copyright terms: Public domain | W3C validator |