| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankelb | Structured version Visualization version GIF version | ||
| Description: The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankelb | ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1elssi 9765 | . . . . . 6 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → 𝐵 ⊆ ∪ (𝑅1 “ On)) | |
| 2 | 1 | sseld 3948 | . . . . 5 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ (𝑅1 “ On))) |
| 3 | rankidn 9782 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴))) | |
| 4 | 2, 3 | syl6 35 | . . . 4 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) |
| 5 | 4 | imp 406 | . . 3 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴))) |
| 6 | rankon 9755 | . . . . 5 ⊢ (rank‘𝐵) ∈ On | |
| 7 | rankon 9755 | . . . . 5 ⊢ (rank‘𝐴) ∈ On | |
| 8 | ontri1 6369 | . . . . 5 ⊢ (((rank‘𝐵) ∈ On ∧ (rank‘𝐴) ∈ On) → ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ (rank‘𝐵))) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . 4 ⊢ ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ (rank‘𝐵)) |
| 10 | rankdmr1 9761 | . . . . . 6 ⊢ (rank‘𝐵) ∈ dom 𝑅1 | |
| 11 | rankdmr1 9761 | . . . . . 6 ⊢ (rank‘𝐴) ∈ dom 𝑅1 | |
| 12 | r1ord3g 9739 | . . . . . 6 ⊢ (((rank‘𝐵) ∈ dom 𝑅1 ∧ (rank‘𝐴) ∈ dom 𝑅1) → ((rank‘𝐵) ⊆ (rank‘𝐴) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)))) | |
| 13 | 10, 11, 12 | mp2an 692 | . . . . 5 ⊢ ((rank‘𝐵) ⊆ (rank‘𝐴) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴))) |
| 14 | r1rankidb 9764 | . . . . . 6 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵))) | |
| 15 | 14 | sselda 3949 | . . . . 5 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (𝑅1‘(rank‘𝐵))) |
| 16 | ssel 3943 | . . . . 5 ⊢ ((𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)) → (𝐴 ∈ (𝑅1‘(rank‘𝐵)) → 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) | |
| 17 | 13, 15, 16 | syl2imc 41 | . . . 4 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → ((rank‘𝐵) ⊆ (rank‘𝐴) → 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) |
| 18 | 9, 17 | biimtrrid 243 | . . 3 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → (¬ (rank‘𝐴) ∈ (rank‘𝐵) → 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) |
| 19 | 5, 18 | mt3d 148 | . 2 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → (rank‘𝐴) ∈ (rank‘𝐵)) |
| 20 | 19 | ex 412 | 1 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 ∪ cuni 4874 dom cdm 5641 “ cima 5644 Oncon0 6335 ‘cfv 6514 𝑅1cr1 9722 rankcrnk 9723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-r1 9724 df-rank 9725 |
| This theorem is referenced by: wfelirr 9785 rankval3b 9786 rankel 9799 rankunb 9810 rankuni2b 9813 rankcf 10737 rankrelp 44957 |
| Copyright terms: Public domain | W3C validator |