| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cygth | Structured version Visualization version GIF version | ||
| Description: The "fundamental theorem of cyclic groups". Cyclic groups are exactly the additive groups ℤ / 𝑛ℤ, for 0 ≤ 𝑛 (where 𝑛 = 0 is the infinite cyclic group ℤ), up to isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| cygth | ⊢ (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashcl 14328 | . . . . 5 ⊢ ((Base‘𝐺) ∈ Fin → (♯‘(Base‘𝐺)) ∈ ℕ0) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ (Base‘𝐺) ∈ Fin) → (♯‘(Base‘𝐺)) ∈ ℕ0) |
| 3 | 0nn0 12464 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ ¬ (Base‘𝐺) ∈ Fin) → 0 ∈ ℕ0) |
| 5 | 2, 4 | ifclda 4527 | . . 3 ⊢ (𝐺 ∈ CycGrp → if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) ∈ ℕ0) |
| 6 | eqid 2730 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 7 | eqid 2730 | . . . 4 ⊢ if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) | |
| 8 | eqid 2730 | . . . 4 ⊢ (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)) = (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)) | |
| 9 | 6, 7, 8 | cygzn 21487 | . . 3 ⊢ (𝐺 ∈ CycGrp → 𝐺 ≃𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))) |
| 10 | fveq2 6861 | . . . . 5 ⊢ (𝑛 = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) → (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))) | |
| 11 | 10 | breq2d 5122 | . . . 4 ⊢ (𝑛 = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) → (𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) ↔ 𝐺 ≃𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)))) |
| 12 | 11 | rspcev 3591 | . . 3 ⊢ ((if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) ∈ ℕ0 ∧ 𝐺 ≃𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))) → ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
| 13 | 5, 9, 12 | syl2anc 584 | . 2 ⊢ (𝐺 ∈ CycGrp → ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
| 14 | gicsym 19214 | . . . 4 ⊢ (𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) → (ℤ/nℤ‘𝑛) ≃𝑔 𝐺) | |
| 15 | eqid 2730 | . . . . 5 ⊢ (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘𝑛) | |
| 16 | 15 | zncyg 21465 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (ℤ/nℤ‘𝑛) ∈ CycGrp) |
| 17 | giccyg 19837 | . . . 4 ⊢ ((ℤ/nℤ‘𝑛) ≃𝑔 𝐺 → ((ℤ/nℤ‘𝑛) ∈ CycGrp → 𝐺 ∈ CycGrp)) | |
| 18 | 14, 16, 17 | syl2imc 41 | . . 3 ⊢ (𝑛 ∈ ℕ0 → (𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) → 𝐺 ∈ CycGrp)) |
| 19 | 18 | rexlimiv 3128 | . 2 ⊢ (∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) → 𝐺 ∈ CycGrp) |
| 20 | 13, 19 | impbii 209 | 1 ⊢ (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ifcif 4491 class class class wbr 5110 ‘cfv 6514 Fincfn 8921 0cc0 11075 ℕ0cn0 12449 ♯chash 14302 Basecbs 17186 ≃𝑔 cgic 19197 CycGrpccyg 19814 ℤ/nℤczn 21419 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-imas 17478 df-qus 17479 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-nsg 19063 df-eqg 19064 df-ghm 19152 df-gim 19198 df-gic 19199 df-od 19465 df-cmn 19719 df-abl 19720 df-cyg 19815 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-lmod 20775 df-lss 20845 df-lsp 20885 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-rsp 21126 df-2idl 21167 df-cnfld 21272 df-zring 21364 df-zrh 21420 df-zn 21423 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |