MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygth Structured version   Visualization version   GIF version

Theorem cygth 20877
Description: The "fundamental theorem of cyclic groups". Cyclic groups are exactly the additive groups ℤ / 𝑛, for 0 ≤ 𝑛 (where 𝑛 = 0 is the infinite cyclic group ), up to isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
cygth (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺𝑔 (ℤ/nℤ‘𝑛))
Distinct variable group:   𝑛,𝐺

Proof of Theorem cygth
StepHypRef Expression
1 hashcl 14163 . . . . 5 ((Base‘𝐺) ∈ Fin → (♯‘(Base‘𝐺)) ∈ ℕ0)
21adantl 482 . . . 4 ((𝐺 ∈ CycGrp ∧ (Base‘𝐺) ∈ Fin) → (♯‘(Base‘𝐺)) ∈ ℕ0)
3 0nn0 12341 . . . . 5 0 ∈ ℕ0
43a1i 11 . . . 4 ((𝐺 ∈ CycGrp ∧ ¬ (Base‘𝐺) ∈ Fin) → 0 ∈ ℕ0)
52, 4ifclda 4507 . . 3 (𝐺 ∈ CycGrp → if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) ∈ ℕ0)
6 eqid 2736 . . . 4 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2736 . . . 4 if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)
8 eqid 2736 . . . 4 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)) = (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))
96, 7, 8cygzn 20876 . . 3 (𝐺 ∈ CycGrp → 𝐺𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)))
10 fveq2 6819 . . . . 5 (𝑛 = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) → (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)))
1110breq2d 5101 . . . 4 (𝑛 = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) → (𝐺𝑔 (ℤ/nℤ‘𝑛) ↔ 𝐺𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))))
1211rspcev 3570 . . 3 ((if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) ∈ ℕ0𝐺𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))) → ∃𝑛 ∈ ℕ0 𝐺𝑔 (ℤ/nℤ‘𝑛))
135, 9, 12syl2anc 584 . 2 (𝐺 ∈ CycGrp → ∃𝑛 ∈ ℕ0 𝐺𝑔 (ℤ/nℤ‘𝑛))
14 gicsym 18978 . . . 4 (𝐺𝑔 (ℤ/nℤ‘𝑛) → (ℤ/nℤ‘𝑛) ≃𝑔 𝐺)
15 eqid 2736 . . . . 5 (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘𝑛)
1615zncyg 20854 . . . 4 (𝑛 ∈ ℕ0 → (ℤ/nℤ‘𝑛) ∈ CycGrp)
17 giccyg 19588 . . . 4 ((ℤ/nℤ‘𝑛) ≃𝑔 𝐺 → ((ℤ/nℤ‘𝑛) ∈ CycGrp → 𝐺 ∈ CycGrp))
1814, 16, 17syl2imc 41 . . 3 (𝑛 ∈ ℕ0 → (𝐺𝑔 (ℤ/nℤ‘𝑛) → 𝐺 ∈ CycGrp))
1918rexlimiv 3141 . 2 (∃𝑛 ∈ ℕ0 𝐺𝑔 (ℤ/nℤ‘𝑛) → 𝐺 ∈ CycGrp)
2013, 19impbii 208 1 (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺𝑔 (ℤ/nℤ‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1540  wcel 2105  wrex 3070  ifcif 4472   class class class wbr 5089  cfv 6473  Fincfn 8796  0cc0 10964  0cn0 12326  chash 14137  Basecbs 17001  𝑔 cgic 18962  CycGrpccyg 19564  ℤ/nczn 20802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042  ax-addf 11043  ax-mulf 11044
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-tpos 8104  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-oadd 8363  df-omul 8364  df-er 8561  df-ec 8563  df-qs 8567  df-map 8680  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-sup 9291  df-inf 9292  df-oi 9359  df-card 9788  df-acn 9791  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-dec 12531  df-uz 12676  df-rp 12824  df-fz 13333  df-fl 13605  df-mod 13683  df-seq 13815  df-exp 13876  df-hash 14138  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-dvds 16055  df-struct 16937  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-mulr 17065  df-starv 17066  df-sca 17067  df-vsca 17068  df-ip 17069  df-tset 17070  df-ple 17071  df-ds 17073  df-unif 17074  df-0g 17241  df-imas 17308  df-qus 17309  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-mhm 18519  df-grp 18668  df-minusg 18669  df-sbg 18670  df-mulg 18789  df-subg 18840  df-nsg 18841  df-eqg 18842  df-ghm 18920  df-gim 18963  df-gic 18964  df-od 19224  df-cmn 19475  df-abl 19476  df-cyg 19565  df-mgp 19808  df-ur 19825  df-ring 19872  df-cring 19873  df-oppr 19949  df-dvdsr 19970  df-rnghom 20046  df-subrg 20119  df-lmod 20223  df-lss 20292  df-lsp 20332  df-sra 20532  df-rgmod 20533  df-lidl 20534  df-rsp 20535  df-2idl 20601  df-cnfld 20696  df-zring 20769  df-zrh 20803  df-zn 20806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator