| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cygth | Structured version Visualization version GIF version | ||
| Description: The "fundamental theorem of cyclic groups". Cyclic groups are exactly the additive groups ℤ / 𝑛ℤ, for 0 ≤ 𝑛 (where 𝑛 = 0 is the infinite cyclic group ℤ), up to isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| cygth | ⊢ (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashcl 14270 | . . . . 5 ⊢ ((Base‘𝐺) ∈ Fin → (♯‘(Base‘𝐺)) ∈ ℕ0) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ (Base‘𝐺) ∈ Fin) → (♯‘(Base‘𝐺)) ∈ ℕ0) |
| 3 | 0nn0 12407 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ ¬ (Base‘𝐺) ∈ Fin) → 0 ∈ ℕ0) |
| 5 | 2, 4 | ifclda 4512 | . . 3 ⊢ (𝐺 ∈ CycGrp → if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) ∈ ℕ0) |
| 6 | eqid 2733 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 7 | eqid 2733 | . . . 4 ⊢ if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) | |
| 8 | eqid 2733 | . . . 4 ⊢ (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)) = (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)) | |
| 9 | 6, 7, 8 | cygzn 21516 | . . 3 ⊢ (𝐺 ∈ CycGrp → 𝐺 ≃𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))) |
| 10 | fveq2 6831 | . . . . 5 ⊢ (𝑛 = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) → (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))) | |
| 11 | 10 | breq2d 5107 | . . . 4 ⊢ (𝑛 = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) → (𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) ↔ 𝐺 ≃𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)))) |
| 12 | 11 | rspcev 3573 | . . 3 ⊢ ((if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) ∈ ℕ0 ∧ 𝐺 ≃𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))) → ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
| 13 | 5, 9, 12 | syl2anc 584 | . 2 ⊢ (𝐺 ∈ CycGrp → ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
| 14 | gicsym 19195 | . . . 4 ⊢ (𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) → (ℤ/nℤ‘𝑛) ≃𝑔 𝐺) | |
| 15 | eqid 2733 | . . . . 5 ⊢ (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘𝑛) | |
| 16 | 15 | zncyg 21494 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (ℤ/nℤ‘𝑛) ∈ CycGrp) |
| 17 | giccyg 19820 | . . . 4 ⊢ ((ℤ/nℤ‘𝑛) ≃𝑔 𝐺 → ((ℤ/nℤ‘𝑛) ∈ CycGrp → 𝐺 ∈ CycGrp)) | |
| 18 | 14, 16, 17 | syl2imc 41 | . . 3 ⊢ (𝑛 ∈ ℕ0 → (𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) → 𝐺 ∈ CycGrp)) |
| 19 | 18 | rexlimiv 3127 | . 2 ⊢ (∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) → 𝐺 ∈ CycGrp) |
| 20 | 13, 19 | impbii 209 | 1 ⊢ (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ifcif 4476 class class class wbr 5095 ‘cfv 6489 Fincfn 8879 0cc0 11017 ℕ0cn0 12392 ♯chash 14244 Basecbs 17127 ≃𝑔 cgic 19178 CycGrpccyg 19797 ℤ/nℤczn 21448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 ax-mulf 11097 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-omul 8399 df-er 8631 df-ec 8633 df-qs 8637 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-acn 9846 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-rp 12897 df-fz 13415 df-fl 13703 df-mod 13781 df-seq 13916 df-exp 13976 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-dvds 16171 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-0g 17352 df-imas 17420 df-qus 17421 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-nsg 19045 df-eqg 19046 df-ghm 19133 df-gim 19179 df-gic 19180 df-od 19448 df-cmn 19702 df-abl 19703 df-cyg 19798 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-cring 20162 df-oppr 20264 df-dvdsr 20284 df-rhm 20399 df-subrng 20470 df-subrg 20494 df-lmod 20804 df-lss 20874 df-lsp 20914 df-sra 21116 df-rgmod 21117 df-lidl 21154 df-rsp 21155 df-2idl 21196 df-cnfld 21301 df-zring 21393 df-zrh 21449 df-zn 21452 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |