MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygth Structured version   Visualization version   GIF version

Theorem cygth 20490
Description: The "fundamental theorem of cyclic groups". Cyclic groups are exactly the additive groups ℤ / 𝑛, for 0 ≤ 𝑛 (where 𝑛 = 0 is the infinite cyclic group ), up to isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
cygth (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺𝑔 (ℤ/nℤ‘𝑛))
Distinct variable group:   𝑛,𝐺

Proof of Theorem cygth
StepHypRef Expression
1 hashcl 13888 . . . . 5 ((Base‘𝐺) ∈ Fin → (♯‘(Base‘𝐺)) ∈ ℕ0)
21adantl 485 . . . 4 ((𝐺 ∈ CycGrp ∧ (Base‘𝐺) ∈ Fin) → (♯‘(Base‘𝐺)) ∈ ℕ0)
3 0nn0 12070 . . . . 5 0 ∈ ℕ0
43a1i 11 . . . 4 ((𝐺 ∈ CycGrp ∧ ¬ (Base‘𝐺) ∈ Fin) → 0 ∈ ℕ0)
52, 4ifclda 4460 . . 3 (𝐺 ∈ CycGrp → if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) ∈ ℕ0)
6 eqid 2736 . . . 4 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2736 . . . 4 if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)
8 eqid 2736 . . . 4 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)) = (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))
96, 7, 8cygzn 20489 . . 3 (𝐺 ∈ CycGrp → 𝐺𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)))
10 fveq2 6695 . . . . 5 (𝑛 = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) → (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)))
1110breq2d 5051 . . . 4 (𝑛 = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) → (𝐺𝑔 (ℤ/nℤ‘𝑛) ↔ 𝐺𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))))
1211rspcev 3527 . . 3 ((if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) ∈ ℕ0𝐺𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))) → ∃𝑛 ∈ ℕ0 𝐺𝑔 (ℤ/nℤ‘𝑛))
135, 9, 12syl2anc 587 . 2 (𝐺 ∈ CycGrp → ∃𝑛 ∈ ℕ0 𝐺𝑔 (ℤ/nℤ‘𝑛))
14 gicsym 18632 . . . 4 (𝐺𝑔 (ℤ/nℤ‘𝑛) → (ℤ/nℤ‘𝑛) ≃𝑔 𝐺)
15 eqid 2736 . . . . 5 (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘𝑛)
1615zncyg 20467 . . . 4 (𝑛 ∈ ℕ0 → (ℤ/nℤ‘𝑛) ∈ CycGrp)
17 giccyg 19239 . . . 4 ((ℤ/nℤ‘𝑛) ≃𝑔 𝐺 → ((ℤ/nℤ‘𝑛) ∈ CycGrp → 𝐺 ∈ CycGrp))
1814, 16, 17syl2imc 41 . . 3 (𝑛 ∈ ℕ0 → (𝐺𝑔 (ℤ/nℤ‘𝑛) → 𝐺 ∈ CycGrp))
1918rexlimiv 3189 . 2 (∃𝑛 ∈ ℕ0 𝐺𝑔 (ℤ/nℤ‘𝑛) → 𝐺 ∈ CycGrp)
2013, 19impbii 212 1 (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺𝑔 (ℤ/nℤ‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399   = wceq 1543  wcel 2112  wrex 3052  ifcif 4425   class class class wbr 5039  cfv 6358  Fincfn 8604  0cc0 10694  0cn0 12055  chash 13861  Basecbs 16666  𝑔 cgic 18616  CycGrpccyg 19215  ℤ/nczn 20423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-oadd 8184  df-omul 8185  df-er 8369  df-ec 8371  df-qs 8375  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-acn 9523  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-rp 12552  df-fz 13061  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-dvds 15779  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-0g 16900  df-imas 16967  df-qus 16968  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-grp 18322  df-minusg 18323  df-sbg 18324  df-mulg 18443  df-subg 18494  df-nsg 18495  df-eqg 18496  df-ghm 18574  df-gim 18617  df-gic 18618  df-od 18874  df-cmn 19126  df-abl 19127  df-cyg 19216  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-oppr 19595  df-dvdsr 19613  df-rnghom 19689  df-subrg 19752  df-lmod 19855  df-lss 19923  df-lsp 19963  df-sra 20163  df-rgmod 20164  df-lidl 20165  df-rsp 20166  df-2idl 20224  df-cnfld 20318  df-zring 20390  df-zrh 20424  df-zn 20427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator