![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cygth | Structured version Visualization version GIF version |
Description: The "fundamental theorem of cyclic groups". Cyclic groups are exactly the additive groups ℤ / 𝑛ℤ, for 0 ≤ 𝑛 (where 𝑛 = 0 is the infinite cyclic group ℤ), up to isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cygth | ⊢ (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 13349 | . . . . 5 ⊢ ((Base‘𝐺) ∈ Fin → (♯‘(Base‘𝐺)) ∈ ℕ0) | |
2 | 1 | adantl 467 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ (Base‘𝐺) ∈ Fin) → (♯‘(Base‘𝐺)) ∈ ℕ0) |
3 | 0nn0 11514 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ ¬ (Base‘𝐺) ∈ Fin) → 0 ∈ ℕ0) |
5 | 2, 4 | ifclda 4260 | . . 3 ⊢ (𝐺 ∈ CycGrp → if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) ∈ ℕ0) |
6 | eqid 2771 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
7 | eqid 2771 | . . . 4 ⊢ if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) | |
8 | eqid 2771 | . . . 4 ⊢ (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)) = (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)) | |
9 | 6, 7, 8 | cygzn 20134 | . . 3 ⊢ (𝐺 ∈ CycGrp → 𝐺 ≃𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))) |
10 | fveq2 6333 | . . . . 5 ⊢ (𝑛 = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) → (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))) | |
11 | 10 | breq2d 4799 | . . . 4 ⊢ (𝑛 = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) → (𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) ↔ 𝐺 ≃𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)))) |
12 | 11 | rspcev 3460 | . . 3 ⊢ ((if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) ∈ ℕ0 ∧ 𝐺 ≃𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))) → ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
13 | 5, 9, 12 | syl2anc 573 | . 2 ⊢ (𝐺 ∈ CycGrp → ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
14 | gicsym 17924 | . . . 4 ⊢ (𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) → (ℤ/nℤ‘𝑛) ≃𝑔 𝐺) | |
15 | eqid 2771 | . . . . 5 ⊢ (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘𝑛) | |
16 | 15 | zncyg 20112 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (ℤ/nℤ‘𝑛) ∈ CycGrp) |
17 | giccyg 18508 | . . . 4 ⊢ ((ℤ/nℤ‘𝑛) ≃𝑔 𝐺 → ((ℤ/nℤ‘𝑛) ∈ CycGrp → 𝐺 ∈ CycGrp)) | |
18 | 14, 16, 17 | syl2imc 41 | . . 3 ⊢ (𝑛 ∈ ℕ0 → (𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) → 𝐺 ∈ CycGrp)) |
19 | 18 | rexlimiv 3175 | . 2 ⊢ (∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) → 𝐺 ∈ CycGrp) |
20 | 13, 19 | impbii 199 | 1 ⊢ (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∃wrex 3062 ifcif 4226 class class class wbr 4787 ‘cfv 6030 Fincfn 8113 0cc0 10142 ℕ0cn0 11499 ♯chash 13321 Basecbs 16064 ≃𝑔 cgic 17908 CycGrpccyg 18486 ℤ/nℤczn 20066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-addf 10221 ax-mulf 10222 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-tpos 7508 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-omul 7722 df-er 7900 df-ec 7902 df-qs 7906 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-acn 8972 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-rp 12036 df-fz 12534 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-dvds 15190 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-0g 16310 df-imas 16376 df-qus 16377 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-grp 17633 df-minusg 17634 df-sbg 17635 df-mulg 17749 df-subg 17799 df-nsg 17800 df-eqg 17801 df-ghm 17866 df-gim 17909 df-gic 17910 df-od 18155 df-cmn 18402 df-abl 18403 df-cyg 18487 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-oppr 18831 df-dvdsr 18849 df-rnghom 18925 df-subrg 18988 df-lmod 19075 df-lss 19143 df-lsp 19185 df-sra 19387 df-rgmod 19388 df-lidl 19389 df-rsp 19390 df-2idl 19447 df-cnfld 19962 df-zring 20034 df-zrh 20067 df-zn 20070 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |