| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cygth | Structured version Visualization version GIF version | ||
| Description: The "fundamental theorem of cyclic groups". Cyclic groups are exactly the additive groups ℤ / 𝑛ℤ, for 0 ≤ 𝑛 (where 𝑛 = 0 is the infinite cyclic group ℤ), up to isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| cygth | ⊢ (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashcl 14321 | . . . . 5 ⊢ ((Base‘𝐺) ∈ Fin → (♯‘(Base‘𝐺)) ∈ ℕ0) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ (Base‘𝐺) ∈ Fin) → (♯‘(Base‘𝐺)) ∈ ℕ0) |
| 3 | 0nn0 12457 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ ¬ (Base‘𝐺) ∈ Fin) → 0 ∈ ℕ0) |
| 5 | 2, 4 | ifclda 4524 | . . 3 ⊢ (𝐺 ∈ CycGrp → if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) ∈ ℕ0) |
| 6 | eqid 2729 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 7 | eqid 2729 | . . . 4 ⊢ if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) | |
| 8 | eqid 2729 | . . . 4 ⊢ (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)) = (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)) | |
| 9 | 6, 7, 8 | cygzn 21480 | . . 3 ⊢ (𝐺 ∈ CycGrp → 𝐺 ≃𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))) |
| 10 | fveq2 6858 | . . . . 5 ⊢ (𝑛 = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) → (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))) | |
| 11 | 10 | breq2d 5119 | . . . 4 ⊢ (𝑛 = if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) → (𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) ↔ 𝐺 ≃𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0)))) |
| 12 | 11 | rspcev 3588 | . . 3 ⊢ ((if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0) ∈ ℕ0 ∧ 𝐺 ≃𝑔 (ℤ/nℤ‘if((Base‘𝐺) ∈ Fin, (♯‘(Base‘𝐺)), 0))) → ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
| 13 | 5, 9, 12 | syl2anc 584 | . 2 ⊢ (𝐺 ∈ CycGrp → ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
| 14 | gicsym 19207 | . . . 4 ⊢ (𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) → (ℤ/nℤ‘𝑛) ≃𝑔 𝐺) | |
| 15 | eqid 2729 | . . . . 5 ⊢ (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘𝑛) | |
| 16 | 15 | zncyg 21458 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (ℤ/nℤ‘𝑛) ∈ CycGrp) |
| 17 | giccyg 19830 | . . . 4 ⊢ ((ℤ/nℤ‘𝑛) ≃𝑔 𝐺 → ((ℤ/nℤ‘𝑛) ∈ CycGrp → 𝐺 ∈ CycGrp)) | |
| 18 | 14, 16, 17 | syl2imc 41 | . . 3 ⊢ (𝑛 ∈ ℕ0 → (𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) → 𝐺 ∈ CycGrp)) |
| 19 | 18 | rexlimiv 3127 | . 2 ⊢ (∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛) → 𝐺 ∈ CycGrp) |
| 20 | 13, 19 | impbii 209 | 1 ⊢ (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ifcif 4488 class class class wbr 5107 ‘cfv 6511 Fincfn 8918 0cc0 11068 ℕ0cn0 12442 ♯chash 14295 Basecbs 17179 ≃𝑔 cgic 19190 CycGrpccyg 19807 ℤ/nℤczn 21412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-nsg 19056 df-eqg 19057 df-ghm 19145 df-gim 19191 df-gic 19192 df-od 19458 df-cmn 19712 df-abl 19713 df-cyg 19808 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-2idl 21160 df-cnfld 21265 df-zring 21357 df-zrh 21413 df-zn 21416 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |