Step | Hyp | Ref
| Expression |
1 | | iccpartgtprec.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
2 | 1 | nnnn0d 12223 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
3 | | elnn0uz 12552 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ0
↔ 𝑀 ∈
(ℤ≥‘0)) |
4 | 2, 3 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
5 | | fzpred 13233 |
. . . . . . 7
⊢ (𝑀 ∈
(ℤ≥‘0) → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀))) |
6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (𝜑 → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀))) |
7 | | 0p1e1 12025 |
. . . . . . . . 9
⊢ (0 + 1) =
1 |
8 | 7 | oveq1i 7265 |
. . . . . . . 8
⊢ ((0 +
1)...𝑀) = (1...𝑀) |
9 | 8 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((0 + 1)...𝑀) = (1...𝑀)) |
10 | 9 | uneq2d 4093 |
. . . . . 6
⊢ (𝜑 → ({0} ∪ ((0 +
1)...𝑀)) = ({0} ∪
(1...𝑀))) |
11 | 6, 10 | eqtrd 2778 |
. . . . 5
⊢ (𝜑 → (0...𝑀) = ({0} ∪ (1...𝑀))) |
12 | 11 | eleq2d 2824 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ({0} ∪ (1...𝑀)))) |
13 | | elun 4079 |
. . . . . . 7
⊢ (𝑖 ∈ ({0} ∪ (1...𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ (1...𝑀))) |
14 | | velsn 4574 |
. . . . . . . 8
⊢ (𝑖 ∈ {0} ↔ 𝑖 = 0) |
15 | 14 | orbi1i 910 |
. . . . . . 7
⊢ ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1...𝑀)) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀))) |
16 | 13, 15 | bitri 274 |
. . . . . 6
⊢ (𝑖 ∈ ({0} ∪ (1...𝑀)) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀))) |
17 | | fzisfzounsn 13427 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘0) → (0...𝑀) = ((0..^𝑀) ∪ {𝑀})) |
18 | 4, 17 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0...𝑀) = ((0..^𝑀) ∪ {𝑀})) |
19 | 18 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ (0...𝑀) ↔ 𝑗 ∈ ((0..^𝑀) ∪ {𝑀}))) |
20 | | elun 4079 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 ∈ {𝑀})) |
21 | | velsn 4574 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ {𝑀} ↔ 𝑗 = 𝑀) |
22 | 21 | orbi2i 909 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 ∈ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀)) |
23 | 20, 22 | bitri 274 |
. . . . . . . . 9
⊢ (𝑗 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀)) |
24 | 19, 23 | bitrdi 286 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ (0...𝑀) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀))) |
25 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ∈ (0..^𝑀)) |
26 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 0 < 𝑗) |
27 | 26 | gt0ne0d 11469 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ≠ 0) |
28 | | fzo1fzo0n0 13366 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1..^𝑀) ↔ (𝑗 ∈ (0..^𝑀) ∧ 𝑗 ≠ 0)) |
29 | 25, 27, 28 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ∈ (1..^𝑀)) |
30 | | iccpartgtprec.p |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
31 | 1, 30 | iccpartigtl 44763 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑘)) |
32 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑗 → (𝑃‘𝑘) = (𝑃‘𝑗)) |
33 | 32 | breq2d 5082 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑗 → ((𝑃‘0) < (𝑃‘𝑘) ↔ (𝑃‘0) < (𝑃‘𝑗))) |
34 | 33 | rspcv 3547 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (1..^𝑀) → (∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑘) → (𝑃‘0) < (𝑃‘𝑗))) |
35 | 29, 31, 34 | syl2imc 41 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → (𝑃‘0) < (𝑃‘𝑗))) |
36 | 35 | expd 415 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑗 ∈ (0..^𝑀) → (0 < 𝑗 → (𝑃‘0) < (𝑃‘𝑗)))) |
37 | 36 | impcom 407 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝜑) → (0 < 𝑗 → (𝑃‘0) < (𝑃‘𝑗))) |
38 | | breq1 5073 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 0 → (𝑖 < 𝑗 ↔ 0 < 𝑗)) |
39 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 0 → (𝑃‘𝑖) = (𝑃‘0)) |
40 | 39 | breq1d 5080 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 0 → ((𝑃‘𝑖) < (𝑃‘𝑗) ↔ (𝑃‘0) < (𝑃‘𝑗))) |
41 | 38, 40 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 0 → ((𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗)) ↔ (0 < 𝑗 → (𝑃‘0) < (𝑃‘𝑗)))) |
42 | 37, 41 | syl5ibr 245 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → ((𝑗 ∈ (0..^𝑀) ∧ 𝜑) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗)))) |
43 | 42 | expd 415 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑗 ∈ (0..^𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
44 | 43 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0..^𝑀) → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
45 | 1, 30 | iccpartlt 44764 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) |
46 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑀 → (𝑃‘𝑗) = (𝑃‘𝑀)) |
47 | 39, 46 | breqan12rd 5087 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 = 𝑀 ∧ 𝑖 = 0) → ((𝑃‘𝑖) < (𝑃‘𝑗) ↔ (𝑃‘0) < (𝑃‘𝑀))) |
48 | 45, 47 | syl5ibr 245 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 = 𝑀 ∧ 𝑖 = 0) → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑗))) |
49 | 48 | a1dd 50 |
. . . . . . . . . . . . 13
⊢ ((𝑗 = 𝑀 ∧ 𝑖 = 0) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗)))) |
50 | 49 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑀 → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
51 | 44, 50 | jaoi 853 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
52 | 51 | com12 32 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
53 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℤ) |
54 | 53 | ad3antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑖 ∈ ℤ) |
55 | 53 | peano2zd 12358 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (1...𝑀) → (𝑖 + 1) ∈ ℤ) |
56 | 55 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ∈ ℤ) |
57 | | elfzoelz 13316 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℤ) |
58 | 57 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ) |
59 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗) |
60 | 57, 53 | anim12ci 613 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) |
61 | 60 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) |
62 | | zltp1le 12300 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗)) |
63 | 61, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗)) |
64 | 59, 63 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ≤ 𝑗) |
65 | 56, 58, 64 | 3jca 1126 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗)) |
66 | 65 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗)) |
67 | | eluz2 12517 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈
(ℤ≥‘(𝑖 + 1)) ↔ ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗)) |
68 | 66, 67 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑗 ∈ (ℤ≥‘(𝑖 + 1))) |
69 | 1 | ad2antlr 723 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℕ) |
70 | 30 | ad2antlr 723 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑃 ∈ (RePart‘𝑀)) |
71 | | 1zzd 12281 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 1 ∈ ℤ) |
72 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (𝑖...𝑗) → 𝑘 ∈ ℤ) |
73 | 72 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ ℤ) |
74 | | elfzle1 13188 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (1...𝑀) → 1 ≤ 𝑖) |
75 | | elfzle1 13188 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (𝑖...𝑗) → 𝑖 ≤ 𝑘) |
76 | | 1red 10907 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (𝑖...𝑗) → 1 ∈ ℝ) |
77 | | elfzel1 13184 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (𝑖...𝑗) → 𝑖 ∈ ℤ) |
78 | 77 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (𝑖...𝑗) → 𝑖 ∈ ℝ) |
79 | 72 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (𝑖...𝑗) → 𝑘 ∈ ℝ) |
80 | | letr 10999 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((1
∈ ℝ ∧ 𝑖
∈ ℝ ∧ 𝑘
∈ ℝ) → ((1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑘) → 1 ≤ 𝑘)) |
81 | 76, 78, 79, 80 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (𝑖...𝑗) → ((1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑘) → 1 ≤ 𝑘)) |
82 | 75, 81 | mpan2d 690 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (𝑖...𝑗) → (1 ≤ 𝑖 → 1 ≤ 𝑘)) |
83 | 74, 82 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (1...𝑀) → (𝑘 ∈ (𝑖...𝑗) → 1 ≤ 𝑘)) |
84 | 83 | ad3antlr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑘 ∈ (𝑖...𝑗) → 1 ≤ 𝑘)) |
85 | 84 | imp 406 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 1 ≤ 𝑘) |
86 | | eluz2 12517 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 1 ≤
𝑘)) |
87 | 71, 73, 85, 86 | syl3anbrc 1341 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈
(ℤ≥‘1)) |
88 | | elfzel2 13183 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (1...𝑀) → 𝑀 ∈ ℤ) |
89 | 88 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑀 ∈ ℤ) |
90 | 89 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℤ) |
91 | 79 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ ℝ) |
92 | 57 | zred 12355 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ) |
93 | 92 | ad4antr 728 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑗 ∈ ℝ) |
94 | 69 | nnred 11918 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℝ) |
95 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (𝑖...𝑗) → 𝑘 ≤ 𝑗) |
96 | 95 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ≤ 𝑗) |
97 | | elfzolt2 13325 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 < 𝑀) |
98 | 97 | ad4antr 728 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑗 < 𝑀) |
99 | 91, 93, 94, 96, 98 | lelttrd 11063 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 < 𝑀) |
100 | | elfzo2 13319 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (1..^𝑀) ↔ (𝑘 ∈ (ℤ≥‘1)
∧ 𝑀 ∈ ℤ
∧ 𝑘 < 𝑀)) |
101 | 87, 90, 99, 100 | syl3anbrc 1341 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ (1..^𝑀)) |
102 | 69, 70, 101 | iccpartipre 44761 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → (𝑃‘𝑘) ∈ ℝ) |
103 | 1 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑀 ∈ ℕ) |
104 | 30 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑃 ∈ (RePart‘𝑀)) |
105 | 57 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑗 ∈ ℤ) |
106 | | fzoval 13317 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℤ → (𝑖..^𝑗) = (𝑖...(𝑗 − 1))) |
107 | 105, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖..^𝑗) = (𝑖...(𝑗 − 1))) |
108 | | elfzo0le 13359 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ≤ 𝑀) |
109 | | 0le1 11428 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 0 ≤
1 |
110 | | 0red 10909 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (1...𝑀) → 0 ∈ ℝ) |
111 | | 1red 10907 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (1...𝑀) → 1 ∈ ℝ) |
112 | 53 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℝ) |
113 | | letr 10999 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑖 ∈ ℝ) → ((0 ≤ 1 ∧ 1
≤ 𝑖) → 0 ≤ 𝑖)) |
114 | 110, 111,
112, 113 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ (1...𝑀) → ((0 ≤ 1 ∧ 1 ≤ 𝑖) → 0 ≤ 𝑖)) |
115 | 109, 114 | mpani 692 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (1...𝑀) → (1 ≤ 𝑖 → 0 ≤ 𝑖)) |
116 | 74, 115 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (1...𝑀) → 0 ≤ 𝑖) |
117 | 108, 116 | anim12ci 613 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (0 ≤ 𝑖 ∧ 𝑗 ≤ 𝑀)) |
118 | 117 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (0 ≤ 𝑖 ∧ 𝑗 ≤ 𝑀)) |
119 | | 0zd 12261 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0..^𝑀) → 0 ∈ ℤ) |
120 | | elfzoel2 13315 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0..^𝑀) → 𝑀 ∈ ℤ) |
121 | 119, 120 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (0..^𝑀) → (0 ∈ ℤ ∧ 𝑀 ∈
ℤ)) |
122 | 121 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (0 ∈ ℤ ∧ 𝑀 ∈
ℤ)) |
123 | | ssfzo12bi 13410 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (0 ∈
ℤ ∧ 𝑀 ∈
ℤ) ∧ 𝑖 < 𝑗) → ((𝑖..^𝑗) ⊆ (0..^𝑀) ↔ (0 ≤ 𝑖 ∧ 𝑗 ≤ 𝑀))) |
124 | 61, 122, 59, 123 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → ((𝑖..^𝑗) ⊆ (0..^𝑀) ↔ (0 ≤ 𝑖 ∧ 𝑗 ≤ 𝑀))) |
125 | 118, 124 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖..^𝑗) ⊆ (0..^𝑀)) |
126 | 125 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖..^𝑗) ⊆ (0..^𝑀)) |
127 | 107, 126 | eqsstrrd 3956 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖...(𝑗 − 1)) ⊆ (0..^𝑀)) |
128 | 127 | sselda 3917 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑘 ∈ (0..^𝑀)) |
129 | | iccpartimp 44757 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*
↑m (0...𝑀))
∧ (𝑃‘𝑘) < (𝑃‘(𝑘 + 1)))) |
130 | 103, 104,
128, 129 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → (𝑃 ∈ (ℝ*
↑m (0...𝑀))
∧ (𝑃‘𝑘) < (𝑃‘(𝑘 + 1)))) |
131 | 130 | simprd 495 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → (𝑃‘𝑘) < (𝑃‘(𝑘 + 1))) |
132 | 54, 68, 102, 131 | smonoord 44711 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑃‘𝑖) < (𝑃‘𝑗)) |
133 | 132 | exp31 419 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑗)))) |
134 | 133 | com23 86 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗)))) |
135 | 134 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0..^𝑀) → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
136 | | elfzuz 13181 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈
(ℤ≥‘1)) |
137 | 136 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 ∈
(ℤ≥‘1)) |
138 | 88 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑀 ∈ ℤ) |
139 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 < 𝑀) |
140 | | elfzo2 13319 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (1..^𝑀) ↔ (𝑖 ∈ (ℤ≥‘1)
∧ 𝑀 ∈ ℤ
∧ 𝑖 < 𝑀)) |
141 | 137, 138,
139, 140 | syl3anbrc 1341 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 ∈ (1..^𝑀)) |
142 | 1, 30 | iccpartiltu 44762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀)) |
143 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) |
144 | 143 | breq1d 5080 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑖 → ((𝑃‘𝑘) < (𝑃‘𝑀) ↔ (𝑃‘𝑖) < (𝑃‘𝑀))) |
145 | 144 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1..^𝑀) → (∀𝑘 ∈ (1..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
146 | 141, 142,
145 | syl2imc 41 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
147 | 146 | expd 415 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑖 < 𝑀 → (𝑃‘𝑖) < (𝑃‘𝑀)))) |
148 | 147 | impcom 407 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (1...𝑀) ∧ 𝜑) → (𝑖 < 𝑀 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
149 | 148 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀)) |
150 | 149 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
151 | | breq2 5074 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑀 → (𝑖 < 𝑗 ↔ 𝑖 < 𝑀)) |
152 | 151 | anbi2d 628 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑗) ↔ ((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀))) |
153 | 46 | breq2d 5082 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑀 → ((𝑃‘𝑖) < (𝑃‘𝑗) ↔ (𝑃‘𝑖) < (𝑃‘𝑀))) |
154 | 150, 152,
153 | 3imtr4d 293 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑗) → (𝑃‘𝑖) < (𝑃‘𝑗))) |
155 | 154 | exp4c 432 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑀 → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
156 | 135, 155 | jaoi 853 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
157 | 156 | com12 32 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑀) → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
158 | 52, 157 | jaoi 853 |
. . . . . . . . 9
⊢ ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
159 | 158 | com13 88 |
. . . . . . . 8
⊢ (𝜑 → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
160 | 24, 159 | sylbid 239 |
. . . . . . 7
⊢ (𝜑 → (𝑗 ∈ (0...𝑀) → ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
161 | 160 | com3r 87 |
. . . . . 6
⊢ ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝜑 → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
162 | 16, 161 | sylbi 216 |
. . . . 5
⊢ (𝑖 ∈ ({0} ∪ (1...𝑀)) → (𝜑 → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
163 | 162 | com12 32 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ ({0} ∪ (1...𝑀)) → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
164 | 12, 163 | sylbid 239 |
. . 3
⊢ (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
165 | 164 | imp32 418 |
. 2
⊢ ((𝜑 ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑀))) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))) |
166 | 165 | ralrimivva 3114 |
1
⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))) |