Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartgt Structured version   Visualization version   GIF version

Theorem iccpartgt 44495
Description: If there is a partition, then all intermediate points and the bounds are strictly ordered. (Contributed by AV, 18-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartgt (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖   𝑗,𝑀   𝑃,𝑗,𝑖   𝜑,𝑗

Proof of Theorem iccpartgt
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
21nnnn0d 12115 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
3 elnn0uz 12444 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ (ℤ‘0))
42, 3sylib 221 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
5 fzpred 13125 . . . . . . 7 (𝑀 ∈ (ℤ‘0) → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀)))
64, 5syl 17 . . . . . 6 (𝜑 → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀)))
7 0p1e1 11917 . . . . . . . . 9 (0 + 1) = 1
87oveq1i 7201 . . . . . . . 8 ((0 + 1)...𝑀) = (1...𝑀)
98a1i 11 . . . . . . 7 (𝜑 → ((0 + 1)...𝑀) = (1...𝑀))
109uneq2d 4063 . . . . . 6 (𝜑 → ({0} ∪ ((0 + 1)...𝑀)) = ({0} ∪ (1...𝑀)))
116, 10eqtrd 2771 . . . . 5 (𝜑 → (0...𝑀) = ({0} ∪ (1...𝑀)))
1211eleq2d 2816 . . . 4 (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ({0} ∪ (1...𝑀))))
13 elun 4049 . . . . . . 7 (𝑖 ∈ ({0} ∪ (1...𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ (1...𝑀)))
14 velsn 4543 . . . . . . . 8 (𝑖 ∈ {0} ↔ 𝑖 = 0)
1514orbi1i 914 . . . . . . 7 ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1...𝑀)) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)))
1613, 15bitri 278 . . . . . 6 (𝑖 ∈ ({0} ∪ (1...𝑀)) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)))
17 fzisfzounsn 13319 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘0) → (0...𝑀) = ((0..^𝑀) ∪ {𝑀}))
184, 17syl 17 . . . . . . . . . 10 (𝜑 → (0...𝑀) = ((0..^𝑀) ∪ {𝑀}))
1918eleq2d 2816 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (0...𝑀) ↔ 𝑗 ∈ ((0..^𝑀) ∪ {𝑀})))
20 elun 4049 . . . . . . . . . 10 (𝑗 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 ∈ {𝑀}))
21 velsn 4543 . . . . . . . . . . 11 (𝑗 ∈ {𝑀} ↔ 𝑗 = 𝑀)
2221orbi2i 913 . . . . . . . . . 10 ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 ∈ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀))
2320, 22bitri 278 . . . . . . . . 9 (𝑗 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀))
2419, 23bitrdi 290 . . . . . . . 8 (𝜑 → (𝑗 ∈ (0...𝑀) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀)))
25 simpl 486 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ∈ (0..^𝑀))
26 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 0 < 𝑗)
2726gt0ne0d 11361 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ≠ 0)
28 fzo1fzo0n0 13258 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1..^𝑀) ↔ (𝑗 ∈ (0..^𝑀) ∧ 𝑗 ≠ 0))
2925, 27, 28sylanbrc 586 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ∈ (1..^𝑀))
30 iccpartgtprec.p . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ (RePart‘𝑀))
311, 30iccpartigtl 44491 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑘))
32 fveq2 6695 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → (𝑃𝑘) = (𝑃𝑗))
3332breq2d 5051 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → ((𝑃‘0) < (𝑃𝑘) ↔ (𝑃‘0) < (𝑃𝑗)))
3433rspcv 3522 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1..^𝑀) → (∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑘) → (𝑃‘0) < (𝑃𝑗)))
3529, 31, 34syl2imc 41 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → (𝑃‘0) < (𝑃𝑗)))
3635expd 419 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑗 ∈ (0..^𝑀) → (0 < 𝑗 → (𝑃‘0) < (𝑃𝑗))))
3736impcom 411 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (0..^𝑀) ∧ 𝜑) → (0 < 𝑗 → (𝑃‘0) < (𝑃𝑗)))
38 breq1 5042 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑖 < 𝑗 ↔ 0 < 𝑗))
39 fveq2 6695 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑃𝑖) = (𝑃‘0))
4039breq1d 5049 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → ((𝑃𝑖) < (𝑃𝑗) ↔ (𝑃‘0) < (𝑃𝑗)))
4138, 40imbi12d 348 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ((𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) ↔ (0 < 𝑗 → (𝑃‘0) < (𝑃𝑗))))
4237, 41syl5ibr 249 . . . . . . . . . . . . . 14 (𝑖 = 0 → ((𝑗 ∈ (0..^𝑀) ∧ 𝜑) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗))))
4342expd 419 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑗 ∈ (0..^𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
4443com12 32 . . . . . . . . . . . 12 (𝑗 ∈ (0..^𝑀) → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
451, 30iccpartlt 44492 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃‘0) < (𝑃𝑀))
46 fveq2 6695 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑀 → (𝑃𝑗) = (𝑃𝑀))
4739, 46breqan12rd 5056 . . . . . . . . . . . . . . 15 ((𝑗 = 𝑀𝑖 = 0) → ((𝑃𝑖) < (𝑃𝑗) ↔ (𝑃‘0) < (𝑃𝑀)))
4845, 47syl5ibr 249 . . . . . . . . . . . . . 14 ((𝑗 = 𝑀𝑖 = 0) → (𝜑 → (𝑃𝑖) < (𝑃𝑗)))
4948a1dd 50 . . . . . . . . . . . . 13 ((𝑗 = 𝑀𝑖 = 0) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗))))
5049ex 416 . . . . . . . . . . . 12 (𝑗 = 𝑀 → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
5144, 50jaoi 857 . . . . . . . . . . 11 ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
5251com12 32 . . . . . . . . . 10 (𝑖 = 0 → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
53 elfzelz 13077 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℤ)
5453ad3antlr 731 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑖 ∈ ℤ)
5553peano2zd 12250 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (1...𝑀) → (𝑖 + 1) ∈ ℤ)
5655ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ∈ ℤ)
57 elfzoelz 13208 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℤ)
5857ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ)
59 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗)
6057, 53anim12ci 617 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ))
6160adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ))
62 zltp1le 12192 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗))
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗))
6459, 63mpbid 235 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ≤ 𝑗)
6556, 58, 643jca 1130 . . . . . . . . . . . . . . . . . 18 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗))
6665adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗))
67 eluz2 12409 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ‘(𝑖 + 1)) ↔ ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗))
6866, 67sylibr 237 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑗 ∈ (ℤ‘(𝑖 + 1)))
691ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℕ)
7030ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑃 ∈ (RePart‘𝑀))
71 1zzd 12173 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 1 ∈ ℤ)
72 elfzelz 13077 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝑖...𝑗) → 𝑘 ∈ ℤ)
7372adantl 485 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ ℤ)
74 elfzle1 13080 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (1...𝑀) → 1 ≤ 𝑖)
75 elfzle1 13080 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (𝑖...𝑗) → 𝑖𝑘)
76 1red 10799 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑖...𝑗) → 1 ∈ ℝ)
77 elfzel1 13076 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (𝑖...𝑗) → 𝑖 ∈ ℤ)
7877zred 12247 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑖...𝑗) → 𝑖 ∈ ℝ)
7972zred 12247 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑖...𝑗) → 𝑘 ∈ ℝ)
80 letr 10891 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((1 ≤ 𝑖𝑖𝑘) → 1 ≤ 𝑘))
8176, 78, 79, 80syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (𝑖...𝑗) → ((1 ≤ 𝑖𝑖𝑘) → 1 ≤ 𝑘))
8275, 81mpan2d 694 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (𝑖...𝑗) → (1 ≤ 𝑖 → 1 ≤ 𝑘))
8374, 82syl5com 31 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (1...𝑀) → (𝑘 ∈ (𝑖...𝑗) → 1 ≤ 𝑘))
8483ad3antlr 731 . . . . . . . . . . . . . . . . . . . 20 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑘 ∈ (𝑖...𝑗) → 1 ≤ 𝑘))
8584imp 410 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 1 ≤ 𝑘)
86 eluz2 12409 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
8771, 73, 85, 86syl3anbrc 1345 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ (ℤ‘1))
88 elfzel2 13075 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (1...𝑀) → 𝑀 ∈ ℤ)
8988ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑀 ∈ ℤ)
9089ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℤ)
9179adantl 485 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ ℝ)
9257zred 12247 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ)
9392ad4antr 732 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑗 ∈ ℝ)
9469nnred 11810 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℝ)
95 elfzle2 13081 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝑖...𝑗) → 𝑘𝑗)
9695adantl 485 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘𝑗)
97 elfzolt2 13217 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0..^𝑀) → 𝑗 < 𝑀)
9897ad4antr 732 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑗 < 𝑀)
9991, 93, 94, 96, 98lelttrd 10955 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 < 𝑀)
100 elfzo2 13211 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1..^𝑀) ↔ (𝑘 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑘 < 𝑀))
10187, 90, 99, 100syl3anbrc 1345 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ (1..^𝑀))
10269, 70, 101iccpartipre 44489 . . . . . . . . . . . . . . . 16 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → (𝑃𝑘) ∈ ℝ)
1031ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑀 ∈ ℕ)
10430ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑃 ∈ (RePart‘𝑀))
10557ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑗 ∈ ℤ)
106 fzoval 13209 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℤ → (𝑖..^𝑗) = (𝑖...(𝑗 − 1)))
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖..^𝑗) = (𝑖...(𝑗 − 1)))
108 elfzo0le 13251 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0..^𝑀) → 𝑗𝑀)
109 0le1 11320 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ 1
110 0red 10801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (1...𝑀) → 0 ∈ ℝ)
111 1red 10799 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (1...𝑀) → 1 ∈ ℝ)
11253zred 12247 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℝ)
113 letr 10891 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑖 ∈ ℝ) → ((0 ≤ 1 ∧ 1 ≤ 𝑖) → 0 ≤ 𝑖))
114110, 111, 112, 113syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (1...𝑀) → ((0 ≤ 1 ∧ 1 ≤ 𝑖) → 0 ≤ 𝑖))
115109, 114mpani 696 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (1...𝑀) → (1 ≤ 𝑖 → 0 ≤ 𝑖))
11674, 115mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ (1...𝑀) → 0 ≤ 𝑖)
117108, 116anim12ci 617 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (0 ≤ 𝑖𝑗𝑀))
118117adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (0 ≤ 𝑖𝑗𝑀))
119 0zd 12153 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (0..^𝑀) → 0 ∈ ℤ)
120 elfzoel2 13207 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (0..^𝑀) → 𝑀 ∈ ℤ)
121119, 120jca 515 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0..^𝑀) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ))
122121ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ))
123 ssfzo12bi 13302 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑖 < 𝑗) → ((𝑖..^𝑗) ⊆ (0..^𝑀) ↔ (0 ≤ 𝑖𝑗𝑀)))
12461, 122, 59, 123syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → ((𝑖..^𝑗) ⊆ (0..^𝑀) ↔ (0 ≤ 𝑖𝑗𝑀)))
125118, 124mpbird 260 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖..^𝑗) ⊆ (0..^𝑀))
126125adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖..^𝑗) ⊆ (0..^𝑀))
127107, 126eqsstrrd 3926 . . . . . . . . . . . . . . . . . . 19 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖...(𝑗 − 1)) ⊆ (0..^𝑀))
128127sselda 3887 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑘 ∈ (0..^𝑀))
129 iccpartimp 44485 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝑘) < (𝑃‘(𝑘 + 1))))
130103, 104, 128, 129syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝑘) < (𝑃‘(𝑘 + 1))))
131130simprd 499 . . . . . . . . . . . . . . . 16 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → (𝑃𝑘) < (𝑃‘(𝑘 + 1)))
13254, 68, 102, 131smonoord 44439 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑃𝑖) < (𝑃𝑗))
133132exp31 423 . . . . . . . . . . . . . 14 ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝜑 → (𝑃𝑖) < (𝑃𝑗))))
134133com23 86 . . . . . . . . . . . . 13 ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗))))
135134ex 416 . . . . . . . . . . . 12 (𝑗 ∈ (0..^𝑀) → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
136 elfzuz 13073 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ (ℤ‘1))
137136adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 ∈ (ℤ‘1))
13888adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑀 ∈ ℤ)
139 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 < 𝑀)
140 elfzo2 13211 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (1..^𝑀) ↔ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀))
141137, 138, 139, 140syl3anbrc 1345 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 ∈ (1..^𝑀))
1421, 30iccpartiltu 44490 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃𝑘) < (𝑃𝑀))
143 fveq2 6695 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
144143breq1d 5049 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((𝑃𝑘) < (𝑃𝑀) ↔ (𝑃𝑖) < (𝑃𝑀)))
145144rspcv 3522 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (1..^𝑀) → (∀𝑘 ∈ (1..^𝑀)(𝑃𝑘) < (𝑃𝑀) → (𝑃𝑖) < (𝑃𝑀)))
146141, 142, 145syl2imc 41 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → (𝑃𝑖) < (𝑃𝑀)))
147146expd 419 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑖 < 𝑀 → (𝑃𝑖) < (𝑃𝑀))))
148147impcom 411 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (1...𝑀) ∧ 𝜑) → (𝑖 < 𝑀 → (𝑃𝑖) < (𝑃𝑀)))
149148imp 410 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀) → (𝑃𝑖) < (𝑃𝑀))
150149a1i 11 . . . . . . . . . . . . . 14 (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀) → (𝑃𝑖) < (𝑃𝑀)))
151 breq2 5043 . . . . . . . . . . . . . . 15 (𝑗 = 𝑀 → (𝑖 < 𝑗𝑖 < 𝑀))
152151anbi2d 632 . . . . . . . . . . . . . 14 (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑗) ↔ ((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀)))
15346breq2d 5051 . . . . . . . . . . . . . 14 (𝑗 = 𝑀 → ((𝑃𝑖) < (𝑃𝑗) ↔ (𝑃𝑖) < (𝑃𝑀)))
154150, 152, 1533imtr4d 297 . . . . . . . . . . . . 13 (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑗) → (𝑃𝑖) < (𝑃𝑗)))
155154exp4c 436 . . . . . . . . . . . 12 (𝑗 = 𝑀 → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
156135, 155jaoi 857 . . . . . . . . . . 11 ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
157156com12 32 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
15852, 157jaoi 857 . . . . . . . . 9 ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
159158com13 88 . . . . . . . 8 (𝜑 → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
16024, 159sylbid 243 . . . . . . 7 (𝜑 → (𝑗 ∈ (0...𝑀) → ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
161160com3r 87 . . . . . 6 ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝜑 → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
16216, 161sylbi 220 . . . . 5 (𝑖 ∈ ({0} ∪ (1...𝑀)) → (𝜑 → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
163162com12 32 . . . 4 (𝜑 → (𝑖 ∈ ({0} ∪ (1...𝑀)) → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
16412, 163sylbid 243 . . 3 (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
165164imp32 422 . 2 ((𝜑 ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑀))) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
166165ralrimivva 3102 1 (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  cun 3851  wss 3853  {csn 4527   class class class wbr 5039  cfv 6358  (class class class)co 7191  m cmap 8486  cr 10693  0cc0 10694  1c1 10695   + caddc 10697  *cxr 10831   < clt 10832  cle 10833  cmin 11027  cn 11795  0cn0 12055  cz 12141  cuz 12403  ...cfz 13060  ..^cfzo 13203  RePartciccp 44481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-fzo 13204  df-iccp 44482
This theorem is referenced by:  icceuelpartlem  44503  iccpartnel  44506
  Copyright terms: Public domain W3C validator