Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartgt Structured version   Visualization version   GIF version

Theorem iccpartgt 47421
Description: If there is a partition, then all intermediate points and the bounds are strictly ordered. (Contributed by AV, 18-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartgt (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖   𝑗,𝑀   𝑃,𝑗,𝑖   𝜑,𝑗

Proof of Theorem iccpartgt
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
21nnnn0d 12445 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
3 elnn0uz 12780 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ (ℤ‘0))
42, 3sylib 218 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
5 fzpred 13475 . . . . . . 7 (𝑀 ∈ (ℤ‘0) → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀)))
64, 5syl 17 . . . . . 6 (𝜑 → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀)))
7 0p1e1 12245 . . . . . . . . 9 (0 + 1) = 1
87oveq1i 7359 . . . . . . . 8 ((0 + 1)...𝑀) = (1...𝑀)
98a1i 11 . . . . . . 7 (𝜑 → ((0 + 1)...𝑀) = (1...𝑀))
109uneq2d 4119 . . . . . 6 (𝜑 → ({0} ∪ ((0 + 1)...𝑀)) = ({0} ∪ (1...𝑀)))
116, 10eqtrd 2764 . . . . 5 (𝜑 → (0...𝑀) = ({0} ∪ (1...𝑀)))
1211eleq2d 2814 . . . 4 (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ({0} ∪ (1...𝑀))))
13 elun 4104 . . . . . . 7 (𝑖 ∈ ({0} ∪ (1...𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ (1...𝑀)))
14 velsn 4593 . . . . . . . 8 (𝑖 ∈ {0} ↔ 𝑖 = 0)
1514orbi1i 913 . . . . . . 7 ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1...𝑀)) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)))
1613, 15bitri 275 . . . . . 6 (𝑖 ∈ ({0} ∪ (1...𝑀)) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)))
17 fzisfzounsn 13682 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘0) → (0...𝑀) = ((0..^𝑀) ∪ {𝑀}))
184, 17syl 17 . . . . . . . . . 10 (𝜑 → (0...𝑀) = ((0..^𝑀) ∪ {𝑀}))
1918eleq2d 2814 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (0...𝑀) ↔ 𝑗 ∈ ((0..^𝑀) ∪ {𝑀})))
20 elun 4104 . . . . . . . . . 10 (𝑗 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 ∈ {𝑀}))
21 velsn 4593 . . . . . . . . . . 11 (𝑗 ∈ {𝑀} ↔ 𝑗 = 𝑀)
2221orbi2i 912 . . . . . . . . . 10 ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 ∈ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀))
2320, 22bitri 275 . . . . . . . . 9 (𝑗 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀))
2419, 23bitrdi 287 . . . . . . . 8 (𝜑 → (𝑗 ∈ (0...𝑀) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀)))
25 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ∈ (0..^𝑀))
26 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 0 < 𝑗)
2726gt0ne0d 11684 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ≠ 0)
28 fzo1fzo0n0 13618 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1..^𝑀) ↔ (𝑗 ∈ (0..^𝑀) ∧ 𝑗 ≠ 0))
2925, 27, 28sylanbrc 583 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ∈ (1..^𝑀))
30 iccpartgtprec.p . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ (RePart‘𝑀))
311, 30iccpartigtl 47417 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑘))
32 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → (𝑃𝑘) = (𝑃𝑗))
3332breq2d 5104 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → ((𝑃‘0) < (𝑃𝑘) ↔ (𝑃‘0) < (𝑃𝑗)))
3433rspcv 3573 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1..^𝑀) → (∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑘) → (𝑃‘0) < (𝑃𝑗)))
3529, 31, 34syl2imc 41 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → (𝑃‘0) < (𝑃𝑗)))
3635expd 415 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑗 ∈ (0..^𝑀) → (0 < 𝑗 → (𝑃‘0) < (𝑃𝑗))))
3736impcom 407 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (0..^𝑀) ∧ 𝜑) → (0 < 𝑗 → (𝑃‘0) < (𝑃𝑗)))
38 breq1 5095 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑖 < 𝑗 ↔ 0 < 𝑗))
39 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑃𝑖) = (𝑃‘0))
4039breq1d 5102 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → ((𝑃𝑖) < (𝑃𝑗) ↔ (𝑃‘0) < (𝑃𝑗)))
4138, 40imbi12d 344 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ((𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) ↔ (0 < 𝑗 → (𝑃‘0) < (𝑃𝑗))))
4237, 41imbitrrid 246 . . . . . . . . . . . . . 14 (𝑖 = 0 → ((𝑗 ∈ (0..^𝑀) ∧ 𝜑) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗))))
4342expd 415 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑗 ∈ (0..^𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
4443com12 32 . . . . . . . . . . . 12 (𝑗 ∈ (0..^𝑀) → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
451, 30iccpartlt 47418 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃‘0) < (𝑃𝑀))
46 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑀 → (𝑃𝑗) = (𝑃𝑀))
4739, 46breqan12rd 5109 . . . . . . . . . . . . . . 15 ((𝑗 = 𝑀𝑖 = 0) → ((𝑃𝑖) < (𝑃𝑗) ↔ (𝑃‘0) < (𝑃𝑀)))
4845, 47imbitrrid 246 . . . . . . . . . . . . . 14 ((𝑗 = 𝑀𝑖 = 0) → (𝜑 → (𝑃𝑖) < (𝑃𝑗)))
4948a1dd 50 . . . . . . . . . . . . 13 ((𝑗 = 𝑀𝑖 = 0) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗))))
5049ex 412 . . . . . . . . . . . 12 (𝑗 = 𝑀 → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
5144, 50jaoi 857 . . . . . . . . . . 11 ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
5251com12 32 . . . . . . . . . 10 (𝑖 = 0 → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
53 elfzelz 13427 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℤ)
5453ad3antlr 731 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑖 ∈ ℤ)
5553peano2zd 12583 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (1...𝑀) → (𝑖 + 1) ∈ ℤ)
5655ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ∈ ℤ)
57 elfzoelz 13562 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℤ)
5857ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ)
59 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗)
6057, 53anim12ci 614 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ))
6160adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ))
62 zltp1le 12525 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗))
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗))
6459, 63mpbid 232 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ≤ 𝑗)
6556, 58, 643jca 1128 . . . . . . . . . . . . . . . . . 18 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗))
6665adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗))
67 eluz2 12741 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ‘(𝑖 + 1)) ↔ ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗))
6866, 67sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑗 ∈ (ℤ‘(𝑖 + 1)))
691ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℕ)
7030ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑃 ∈ (RePart‘𝑀))
71 1zzd 12506 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 1 ∈ ℤ)
72 elfzelz 13427 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝑖...𝑗) → 𝑘 ∈ ℤ)
7372adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ ℤ)
74 elfzle1 13430 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (1...𝑀) → 1 ≤ 𝑖)
75 elfzle1 13430 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (𝑖...𝑗) → 𝑖𝑘)
76 1red 11116 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑖...𝑗) → 1 ∈ ℝ)
77 elfzel1 13426 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (𝑖...𝑗) → 𝑖 ∈ ℤ)
7877zred 12580 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑖...𝑗) → 𝑖 ∈ ℝ)
7972zred 12580 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑖...𝑗) → 𝑘 ∈ ℝ)
80 letr 11210 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((1 ≤ 𝑖𝑖𝑘) → 1 ≤ 𝑘))
8176, 78, 79, 80syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (𝑖...𝑗) → ((1 ≤ 𝑖𝑖𝑘) → 1 ≤ 𝑘))
8275, 81mpan2d 694 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (𝑖...𝑗) → (1 ≤ 𝑖 → 1 ≤ 𝑘))
8374, 82syl5com 31 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (1...𝑀) → (𝑘 ∈ (𝑖...𝑗) → 1 ≤ 𝑘))
8483ad3antlr 731 . . . . . . . . . . . . . . . . . . . 20 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑘 ∈ (𝑖...𝑗) → 1 ≤ 𝑘))
8584imp 406 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 1 ≤ 𝑘)
86 eluz2 12741 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
8771, 73, 85, 86syl3anbrc 1344 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ (ℤ‘1))
88 elfzel2 13425 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (1...𝑀) → 𝑀 ∈ ℤ)
8988ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑀 ∈ ℤ)
9089ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℤ)
9179adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ ℝ)
9257zred 12580 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ)
9392ad4antr 732 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑗 ∈ ℝ)
9469nnred 12143 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℝ)
95 elfzle2 13431 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝑖...𝑗) → 𝑘𝑗)
9695adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘𝑗)
97 elfzolt2 13571 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0..^𝑀) → 𝑗 < 𝑀)
9897ad4antr 732 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑗 < 𝑀)
9991, 93, 94, 96, 98lelttrd 11274 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 < 𝑀)
100 elfzo2 13565 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1..^𝑀) ↔ (𝑘 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑘 < 𝑀))
10187, 90, 99, 100syl3anbrc 1344 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ (1..^𝑀))
10269, 70, 101iccpartipre 47415 . . . . . . . . . . . . . . . 16 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → (𝑃𝑘) ∈ ℝ)
1031ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑀 ∈ ℕ)
10430ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑃 ∈ (RePart‘𝑀))
10557ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑗 ∈ ℤ)
106 fzoval 13563 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℤ → (𝑖..^𝑗) = (𝑖...(𝑗 − 1)))
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖..^𝑗) = (𝑖...(𝑗 − 1)))
108 elfzo0le 13606 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0..^𝑀) → 𝑗𝑀)
109 0le1 11643 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ 1
110 0red 11118 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (1...𝑀) → 0 ∈ ℝ)
111 1red 11116 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (1...𝑀) → 1 ∈ ℝ)
11253zred 12580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℝ)
113 letr 11210 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑖 ∈ ℝ) → ((0 ≤ 1 ∧ 1 ≤ 𝑖) → 0 ≤ 𝑖))
114110, 111, 112, 113syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (1...𝑀) → ((0 ≤ 1 ∧ 1 ≤ 𝑖) → 0 ≤ 𝑖))
115109, 114mpani 696 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (1...𝑀) → (1 ≤ 𝑖 → 0 ≤ 𝑖))
11674, 115mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ (1...𝑀) → 0 ≤ 𝑖)
117108, 116anim12ci 614 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (0 ≤ 𝑖𝑗𝑀))
118117adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (0 ≤ 𝑖𝑗𝑀))
119 0zd 12483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (0..^𝑀) → 0 ∈ ℤ)
120 elfzoel2 13561 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (0..^𝑀) → 𝑀 ∈ ℤ)
121119, 120jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0..^𝑀) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ))
122121ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ))
123 ssfzo12bi 13664 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑖 < 𝑗) → ((𝑖..^𝑗) ⊆ (0..^𝑀) ↔ (0 ≤ 𝑖𝑗𝑀)))
12461, 122, 59, 123syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → ((𝑖..^𝑗) ⊆ (0..^𝑀) ↔ (0 ≤ 𝑖𝑗𝑀)))
125118, 124mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖..^𝑗) ⊆ (0..^𝑀))
126125adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖..^𝑗) ⊆ (0..^𝑀))
127107, 126eqsstrrd 3971 . . . . . . . . . . . . . . . . . . 19 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖...(𝑗 − 1)) ⊆ (0..^𝑀))
128127sselda 3935 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑘 ∈ (0..^𝑀))
129 iccpartimp 47411 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝑘) < (𝑃‘(𝑘 + 1))))
130103, 104, 128, 129syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝑘) < (𝑃‘(𝑘 + 1))))
131130simprd 495 . . . . . . . . . . . . . . . 16 (((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → (𝑃𝑘) < (𝑃‘(𝑘 + 1)))
13254, 68, 102, 131smonoord 47365 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑃𝑖) < (𝑃𝑗))
133132exp31 419 . . . . . . . . . . . . . 14 ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝜑 → (𝑃𝑖) < (𝑃𝑗))))
134133com23 86 . . . . . . . . . . . . 13 ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗))))
135134ex 412 . . . . . . . . . . . 12 (𝑗 ∈ (0..^𝑀) → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
136 elfzuz 13423 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ (ℤ‘1))
137136adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 ∈ (ℤ‘1))
13888adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑀 ∈ ℤ)
139 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 < 𝑀)
140 elfzo2 13565 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (1..^𝑀) ↔ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀))
141137, 138, 139, 140syl3anbrc 1344 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 ∈ (1..^𝑀))
1421, 30iccpartiltu 47416 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃𝑘) < (𝑃𝑀))
143 fveq2 6822 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
144143breq1d 5102 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((𝑃𝑘) < (𝑃𝑀) ↔ (𝑃𝑖) < (𝑃𝑀)))
145144rspcv 3573 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (1..^𝑀) → (∀𝑘 ∈ (1..^𝑀)(𝑃𝑘) < (𝑃𝑀) → (𝑃𝑖) < (𝑃𝑀)))
146141, 142, 145syl2imc 41 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → (𝑃𝑖) < (𝑃𝑀)))
147146expd 415 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑖 < 𝑀 → (𝑃𝑖) < (𝑃𝑀))))
148147impcom 407 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (1...𝑀) ∧ 𝜑) → (𝑖 < 𝑀 → (𝑃𝑖) < (𝑃𝑀)))
149148imp 406 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀) → (𝑃𝑖) < (𝑃𝑀))
150149a1i 11 . . . . . . . . . . . . . 14 (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀) → (𝑃𝑖) < (𝑃𝑀)))
151 breq2 5096 . . . . . . . . . . . . . . 15 (𝑗 = 𝑀 → (𝑖 < 𝑗𝑖 < 𝑀))
152151anbi2d 630 . . . . . . . . . . . . . 14 (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑗) ↔ ((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀)))
15346breq2d 5104 . . . . . . . . . . . . . 14 (𝑗 = 𝑀 → ((𝑃𝑖) < (𝑃𝑗) ↔ (𝑃𝑖) < (𝑃𝑀)))
154150, 152, 1533imtr4d 294 . . . . . . . . . . . . 13 (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑗) → (𝑃𝑖) < (𝑃𝑗)))
155154exp4c 432 . . . . . . . . . . . 12 (𝑗 = 𝑀 → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
156135, 155jaoi 857 . . . . . . . . . . 11 ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
157156com12 32 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
15852, 157jaoi 857 . . . . . . . . 9 ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
159158com13 88 . . . . . . . 8 (𝜑 → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
16024, 159sylbid 240 . . . . . . 7 (𝜑 → (𝑗 ∈ (0...𝑀) → ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
161160com3r 87 . . . . . 6 ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝜑 → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
16216, 161sylbi 217 . . . . 5 (𝑖 ∈ ({0} ∪ (1...𝑀)) → (𝜑 → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
163162com12 32 . . . 4 (𝜑 → (𝑖 ∈ ({0} ∪ (1...𝑀)) → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
16412, 163sylbid 240 . . 3 (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))))
165164imp32 418 . 2 ((𝜑 ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑀))) → (𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
166165ralrimivva 3172 1 (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cun 3901  wss 3903  {csn 4577   class class class wbr 5092  cfv 6482  (class class class)co 7349  m cmap 8753  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  *cxr 11148   < clt 11149  cle 11150  cmin 11347  cn 12128  0cn0 12384  cz 12471  cuz 12735  ...cfz 13410  ..^cfzo 13557  RePartciccp 47407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-iccp 47408
This theorem is referenced by:  icceuelpartlem  47429  iccpartnel  47432
  Copyright terms: Public domain W3C validator