| Step | Hyp | Ref
| Expression |
| 1 | | iccpartgtprec.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 2 | 1 | nnnn0d 12567 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 3 | | elnn0uz 12902 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ0
↔ 𝑀 ∈
(ℤ≥‘0)) |
| 4 | 2, 3 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
| 5 | | fzpred 13594 |
. . . . . . 7
⊢ (𝑀 ∈
(ℤ≥‘0) → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀))) |
| 6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (𝜑 → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀))) |
| 7 | | 0p1e1 12367 |
. . . . . . . . 9
⊢ (0 + 1) =
1 |
| 8 | 7 | oveq1i 7420 |
. . . . . . . 8
⊢ ((0 +
1)...𝑀) = (1...𝑀) |
| 9 | 8 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((0 + 1)...𝑀) = (1...𝑀)) |
| 10 | 9 | uneq2d 4148 |
. . . . . 6
⊢ (𝜑 → ({0} ∪ ((0 +
1)...𝑀)) = ({0} ∪
(1...𝑀))) |
| 11 | 6, 10 | eqtrd 2771 |
. . . . 5
⊢ (𝜑 → (0...𝑀) = ({0} ∪ (1...𝑀))) |
| 12 | 11 | eleq2d 2821 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ({0} ∪ (1...𝑀)))) |
| 13 | | elun 4133 |
. . . . . . 7
⊢ (𝑖 ∈ ({0} ∪ (1...𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ (1...𝑀))) |
| 14 | | velsn 4622 |
. . . . . . . 8
⊢ (𝑖 ∈ {0} ↔ 𝑖 = 0) |
| 15 | 14 | orbi1i 913 |
. . . . . . 7
⊢ ((𝑖 ∈ {0} ∨ 𝑖 ∈ (1...𝑀)) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀))) |
| 16 | 13, 15 | bitri 275 |
. . . . . 6
⊢ (𝑖 ∈ ({0} ∪ (1...𝑀)) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀))) |
| 17 | | fzisfzounsn 13800 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘0) → (0...𝑀) = ((0..^𝑀) ∪ {𝑀})) |
| 18 | 4, 17 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0...𝑀) = ((0..^𝑀) ∪ {𝑀})) |
| 19 | 18 | eleq2d 2821 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ (0...𝑀) ↔ 𝑗 ∈ ((0..^𝑀) ∪ {𝑀}))) |
| 20 | | elun 4133 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 ∈ {𝑀})) |
| 21 | | velsn 4622 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ {𝑀} ↔ 𝑗 = 𝑀) |
| 22 | 21 | orbi2i 912 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 ∈ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀)) |
| 23 | 20, 22 | bitri 275 |
. . . . . . . . 9
⊢ (𝑗 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀)) |
| 24 | 19, 23 | bitrdi 287 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ (0...𝑀) ↔ (𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀))) |
| 25 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ∈ (0..^𝑀)) |
| 26 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 0 < 𝑗) |
| 27 | 26 | gt0ne0d 11806 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ≠ 0) |
| 28 | | fzo1fzo0n0 13736 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1..^𝑀) ↔ (𝑗 ∈ (0..^𝑀) ∧ 𝑗 ≠ 0)) |
| 29 | 25, 27, 28 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → 𝑗 ∈ (1..^𝑀)) |
| 30 | | iccpartgtprec.p |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
| 31 | 1, 30 | iccpartigtl 47404 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑘)) |
| 32 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑗 → (𝑃‘𝑘) = (𝑃‘𝑗)) |
| 33 | 32 | breq2d 5136 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑗 → ((𝑃‘0) < (𝑃‘𝑘) ↔ (𝑃‘0) < (𝑃‘𝑗))) |
| 34 | 33 | rspcv 3602 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (1..^𝑀) → (∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑘) → (𝑃‘0) < (𝑃‘𝑗))) |
| 35 | 29, 31, 34 | syl2imc 41 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑗 ∈ (0..^𝑀) ∧ 0 < 𝑗) → (𝑃‘0) < (𝑃‘𝑗))) |
| 36 | 35 | expd 415 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑗 ∈ (0..^𝑀) → (0 < 𝑗 → (𝑃‘0) < (𝑃‘𝑗)))) |
| 37 | 36 | impcom 407 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝜑) → (0 < 𝑗 → (𝑃‘0) < (𝑃‘𝑗))) |
| 38 | | breq1 5127 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 0 → (𝑖 < 𝑗 ↔ 0 < 𝑗)) |
| 39 | | fveq2 6881 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 0 → (𝑃‘𝑖) = (𝑃‘0)) |
| 40 | 39 | breq1d 5134 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 0 → ((𝑃‘𝑖) < (𝑃‘𝑗) ↔ (𝑃‘0) < (𝑃‘𝑗))) |
| 41 | 38, 40 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 0 → ((𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗)) ↔ (0 < 𝑗 → (𝑃‘0) < (𝑃‘𝑗)))) |
| 42 | 37, 41 | imbitrrid 246 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → ((𝑗 ∈ (0..^𝑀) ∧ 𝜑) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗)))) |
| 43 | 42 | expd 415 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑗 ∈ (0..^𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 44 | 43 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0..^𝑀) → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 45 | 1, 30 | iccpartlt 47405 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) |
| 46 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑀 → (𝑃‘𝑗) = (𝑃‘𝑀)) |
| 47 | 39, 46 | breqan12rd 5141 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 = 𝑀 ∧ 𝑖 = 0) → ((𝑃‘𝑖) < (𝑃‘𝑗) ↔ (𝑃‘0) < (𝑃‘𝑀))) |
| 48 | 45, 47 | imbitrrid 246 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 = 𝑀 ∧ 𝑖 = 0) → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑗))) |
| 49 | 48 | a1dd 50 |
. . . . . . . . . . . . 13
⊢ ((𝑗 = 𝑀 ∧ 𝑖 = 0) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗)))) |
| 50 | 49 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑀 → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 51 | 44, 50 | jaoi 857 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝑖 = 0 → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 52 | 51 | com12 32 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 53 | | elfzelz 13546 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℤ) |
| 54 | 53 | ad3antlr 731 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑖 ∈ ℤ) |
| 55 | 53 | peano2zd 12705 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (1...𝑀) → (𝑖 + 1) ∈ ℤ) |
| 56 | 55 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ∈ ℤ) |
| 57 | | elfzoelz 13681 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℤ) |
| 58 | 57 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ) |
| 59 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗) |
| 60 | 57, 53 | anim12ci 614 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) |
| 61 | 60 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ)) |
| 62 | | zltp1le 12647 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗)) |
| 63 | 61, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗)) |
| 64 | 59, 63 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ≤ 𝑗) |
| 65 | 56, 58, 64 | 3jca 1128 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗)) |
| 66 | 65 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗)) |
| 67 | | eluz2 12863 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈
(ℤ≥‘(𝑖 + 1)) ↔ ((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑗)) |
| 68 | 66, 67 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑗 ∈ (ℤ≥‘(𝑖 + 1))) |
| 69 | 1 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℕ) |
| 70 | 30 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑃 ∈ (RePart‘𝑀)) |
| 71 | | 1zzd 12628 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 1 ∈ ℤ) |
| 72 | | elfzelz 13546 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (𝑖...𝑗) → 𝑘 ∈ ℤ) |
| 73 | 72 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ ℤ) |
| 74 | | elfzle1 13549 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (1...𝑀) → 1 ≤ 𝑖) |
| 75 | | elfzle1 13549 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (𝑖...𝑗) → 𝑖 ≤ 𝑘) |
| 76 | | 1red 11241 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (𝑖...𝑗) → 1 ∈ ℝ) |
| 77 | | elfzel1 13545 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (𝑖...𝑗) → 𝑖 ∈ ℤ) |
| 78 | 77 | zred 12702 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (𝑖...𝑗) → 𝑖 ∈ ℝ) |
| 79 | 72 | zred 12702 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (𝑖...𝑗) → 𝑘 ∈ ℝ) |
| 80 | | letr 11334 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((1
∈ ℝ ∧ 𝑖
∈ ℝ ∧ 𝑘
∈ ℝ) → ((1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑘) → 1 ≤ 𝑘)) |
| 81 | 76, 78, 79, 80 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (𝑖...𝑗) → ((1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑘) → 1 ≤ 𝑘)) |
| 82 | 75, 81 | mpan2d 694 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (𝑖...𝑗) → (1 ≤ 𝑖 → 1 ≤ 𝑘)) |
| 83 | 74, 82 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (1...𝑀) → (𝑘 ∈ (𝑖...𝑗) → 1 ≤ 𝑘)) |
| 84 | 83 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑘 ∈ (𝑖...𝑗) → 1 ≤ 𝑘)) |
| 85 | 84 | imp 406 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 1 ≤ 𝑘) |
| 86 | | eluz2 12863 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 1 ≤
𝑘)) |
| 87 | 71, 73, 85, 86 | syl3anbrc 1344 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈
(ℤ≥‘1)) |
| 88 | | elfzel2 13544 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (1...𝑀) → 𝑀 ∈ ℤ) |
| 89 | 88 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → 𝑀 ∈ ℤ) |
| 90 | 89 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℤ) |
| 91 | 79 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ ℝ) |
| 92 | 57 | zred 12702 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ) |
| 93 | 92 | ad4antr 732 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑗 ∈ ℝ) |
| 94 | 69 | nnred 12260 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑀 ∈ ℝ) |
| 95 | | elfzle2 13550 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (𝑖...𝑗) → 𝑘 ≤ 𝑗) |
| 96 | 95 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ≤ 𝑗) |
| 97 | | elfzolt2 13690 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 < 𝑀) |
| 98 | 97 | ad4antr 732 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑗 < 𝑀) |
| 99 | 91, 93, 94, 96, 98 | lelttrd 11398 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 < 𝑀) |
| 100 | | elfzo2 13684 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (1..^𝑀) ↔ (𝑘 ∈ (ℤ≥‘1)
∧ 𝑀 ∈ ℤ
∧ 𝑘 < 𝑀)) |
| 101 | 87, 90, 99, 100 | syl3anbrc 1344 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → 𝑘 ∈ (1..^𝑀)) |
| 102 | 69, 70, 101 | iccpartipre 47402 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...𝑗)) → (𝑃‘𝑘) ∈ ℝ) |
| 103 | 1 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑀 ∈ ℕ) |
| 104 | 30 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑃 ∈ (RePart‘𝑀)) |
| 105 | 57 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → 𝑗 ∈ ℤ) |
| 106 | | fzoval 13682 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℤ → (𝑖..^𝑗) = (𝑖...(𝑗 − 1))) |
| 107 | 105, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖..^𝑗) = (𝑖...(𝑗 − 1))) |
| 108 | | elfzo0le 13725 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ≤ 𝑀) |
| 109 | | 0le1 11765 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 0 ≤
1 |
| 110 | | 0red 11243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (1...𝑀) → 0 ∈ ℝ) |
| 111 | | 1red 11241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (1...𝑀) → 1 ∈ ℝ) |
| 112 | 53 | zred 12702 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℝ) |
| 113 | | letr 11334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑖 ∈ ℝ) → ((0 ≤ 1 ∧ 1
≤ 𝑖) → 0 ≤ 𝑖)) |
| 114 | 110, 111,
112, 113 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ (1...𝑀) → ((0 ≤ 1 ∧ 1 ≤ 𝑖) → 0 ≤ 𝑖)) |
| 115 | 109, 114 | mpani 696 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (1...𝑀) → (1 ≤ 𝑖 → 0 ≤ 𝑖)) |
| 116 | 74, 115 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (1...𝑀) → 0 ≤ 𝑖) |
| 117 | 108, 116 | anim12ci 614 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (0 ≤ 𝑖 ∧ 𝑗 ≤ 𝑀)) |
| 118 | 117 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (0 ≤ 𝑖 ∧ 𝑗 ≤ 𝑀)) |
| 119 | | 0zd 12605 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0..^𝑀) → 0 ∈ ℤ) |
| 120 | | elfzoel2 13680 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0..^𝑀) → 𝑀 ∈ ℤ) |
| 121 | 119, 120 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (0..^𝑀) → (0 ∈ ℤ ∧ 𝑀 ∈
ℤ)) |
| 122 | 121 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (0 ∈ ℤ ∧ 𝑀 ∈
ℤ)) |
| 123 | | ssfzo12bi 13782 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (0 ∈
ℤ ∧ 𝑀 ∈
ℤ) ∧ 𝑖 < 𝑗) → ((𝑖..^𝑗) ⊆ (0..^𝑀) ↔ (0 ≤ 𝑖 ∧ 𝑗 ≤ 𝑀))) |
| 124 | 61, 122, 59, 123 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → ((𝑖..^𝑗) ⊆ (0..^𝑀) ↔ (0 ≤ 𝑖 ∧ 𝑗 ≤ 𝑀))) |
| 125 | 118, 124 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖..^𝑗) ⊆ (0..^𝑀)) |
| 126 | 125 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖..^𝑗) ⊆ (0..^𝑀)) |
| 127 | 107, 126 | eqsstrrd 3999 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑖...(𝑗 − 1)) ⊆ (0..^𝑀)) |
| 128 | 127 | sselda 3963 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → 𝑘 ∈ (0..^𝑀)) |
| 129 | | iccpartimp 47398 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*
↑m (0...𝑀))
∧ (𝑃‘𝑘) < (𝑃‘(𝑘 + 1)))) |
| 130 | 103, 104,
128, 129 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → (𝑃 ∈ (ℝ*
↑m (0...𝑀))
∧ (𝑃‘𝑘) < (𝑃‘(𝑘 + 1)))) |
| 131 | 130 | simprd 495 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑗 ∈
(0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) ∧ 𝑘 ∈ (𝑖...(𝑗 − 1))) → (𝑃‘𝑘) < (𝑃‘(𝑘 + 1))) |
| 132 | 54, 68, 102, 131 | smonoord 47352 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝜑) → (𝑃‘𝑖) < (𝑃‘𝑗)) |
| 133 | 132 | exp31 419 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝜑 → (𝑃‘𝑖) < (𝑃‘𝑗)))) |
| 134 | 133 | com23 86 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (1...𝑀)) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗)))) |
| 135 | 134 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0..^𝑀) → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 136 | | elfzuz 13542 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈
(ℤ≥‘1)) |
| 137 | 136 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 ∈
(ℤ≥‘1)) |
| 138 | 88 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑀 ∈ ℤ) |
| 139 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 < 𝑀) |
| 140 | | elfzo2 13684 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (1..^𝑀) ↔ (𝑖 ∈ (ℤ≥‘1)
∧ 𝑀 ∈ ℤ
∧ 𝑖 < 𝑀)) |
| 141 | 137, 138,
139, 140 | syl3anbrc 1344 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → 𝑖 ∈ (1..^𝑀)) |
| 142 | 1, 30 | iccpartiltu 47403 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀)) |
| 143 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) |
| 144 | 143 | breq1d 5134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑖 → ((𝑃‘𝑘) < (𝑃‘𝑀) ↔ (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 145 | 144 | rspcv 3602 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1..^𝑀) → (∀𝑘 ∈ (1..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 146 | 141, 142,
145 | syl2imc 41 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑖 ∈ (1...𝑀) ∧ 𝑖 < 𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 147 | 146 | expd 415 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑖 < 𝑀 → (𝑃‘𝑖) < (𝑃‘𝑀)))) |
| 148 | 147 | impcom 407 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (1...𝑀) ∧ 𝜑) → (𝑖 < 𝑀 → (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 149 | 148 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀)) |
| 150 | 149 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 151 | | breq2 5128 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑀 → (𝑖 < 𝑗 ↔ 𝑖 < 𝑀)) |
| 152 | 151 | anbi2d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑗) ↔ ((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑀))) |
| 153 | 46 | breq2d 5136 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑀 → ((𝑃‘𝑖) < (𝑃‘𝑗) ↔ (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 154 | 150, 152,
153 | 3imtr4d 294 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑀 → (((𝑖 ∈ (1...𝑀) ∧ 𝜑) ∧ 𝑖 < 𝑗) → (𝑃‘𝑖) < (𝑃‘𝑗))) |
| 155 | 154 | exp4c 432 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑀 → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 156 | 135, 155 | jaoi 857 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 157 | 156 | com12 32 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑀) → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 158 | 52, 157 | jaoi 857 |
. . . . . . . . 9
⊢ ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → (𝜑 → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 159 | 158 | com13 88 |
. . . . . . . 8
⊢ (𝜑 → ((𝑗 ∈ (0..^𝑀) ∨ 𝑗 = 𝑀) → ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 160 | 24, 159 | sylbid 240 |
. . . . . . 7
⊢ (𝜑 → (𝑗 ∈ (0...𝑀) → ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 161 | 160 | com3r 87 |
. . . . . 6
⊢ ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝜑 → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 162 | 16, 161 | sylbi 217 |
. . . . 5
⊢ (𝑖 ∈ ({0} ∪ (1...𝑀)) → (𝜑 → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 163 | 162 | com12 32 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ ({0} ∪ (1...𝑀)) → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 164 | 12, 163 | sylbid 240 |
. . 3
⊢ (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑗 ∈ (0...𝑀) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))))) |
| 165 | 164 | imp32 418 |
. 2
⊢ ((𝜑 ∧ (𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑀))) → (𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))) |
| 166 | 165 | ralrimivva 3188 |
1
⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))) |