Step | Hyp | Ref
| Expression |
1 | | extwwlkfab.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | extwwlkfab.c |
. . 3
⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2)
↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
3 | | extwwlkfab.f |
. . 3
⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
4 | | numclwwlk.t |
. . 3
⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
5 | 1, 2, 3, 4 | numclwwlk1lem2f 28719 |
. 2
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋))) |
6 | 1, 2, 3, 4 | numclwwlk1lem2fv 28720 |
. . . . . 6
⊢ (𝑝 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑝) = 〈(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))〉) |
7 | 6 | ad2antrl 725 |
. . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (𝑇‘𝑝) = 〈(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))〉) |
8 | 1, 2, 3, 4 | numclwwlk1lem2fv 28720 |
. . . . . 6
⊢ (𝑎 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑎) = 〈(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))〉) |
9 | 8 | ad2antll 726 |
. . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (𝑇‘𝑎) = 〈(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))〉) |
10 | 7, 9 | eqeq12d 2754 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → ((𝑇‘𝑝) = (𝑇‘𝑎) ↔ 〈(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))〉 = 〈(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))〉)) |
11 | | ovex 7308 |
. . . . . 6
⊢ (𝑝 prefix (𝑁 − 2)) ∈ V |
12 | | fvex 6787 |
. . . . . 6
⊢ (𝑝‘(𝑁 − 1)) ∈ V |
13 | 11, 12 | opth 5391 |
. . . . 5
⊢
(〈(𝑝 prefix
(𝑁 − 2)), (𝑝‘(𝑁 − 1))〉 = 〈(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))〉 ↔ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) |
14 | | uzuzle23 12629 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈
(ℤ≥‘2)) |
15 | 2 | 2clwwlkel 28713 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑝 ∈ (𝑋𝐶𝑁) ↔ (𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑝‘(𝑁 − 2)) = 𝑋))) |
16 | | isclwwlknon 28455 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋)) |
17 | 16 | anbi1i 624 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ↔ ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋)) |
18 | 15, 17 | bitrdi 287 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑝 ∈ (𝑋𝐶𝑁) ↔ ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋))) |
19 | 2 | 2clwwlkel 28713 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑎 ∈ (𝑋𝐶𝑁) ↔ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))) |
20 | | isclwwlknon 28455 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋)) |
21 | 20 | anbi1i 624 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) ↔ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) |
22 | 19, 21 | bitrdi 287 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑎 ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))) |
23 | 18, 22 | anbi12d 631 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)))) |
24 | 14, 23 | sylan2 593 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)))) |
25 | 24 | 3adant1 1129 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)))) |
26 | 1 | clwwlknbp 28399 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁)) |
27 | 26 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁)) |
28 | 27 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁)) |
29 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (𝑝‘0) = 𝑋) |
30 | 29 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘0) = 𝑋) |
31 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘(𝑁 − 2)) = 𝑋) |
32 | 29 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → 𝑋 = (𝑝‘0)) |
33 | 32 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑝‘0)) |
34 | 31, 33 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘(𝑁 − 2)) = (𝑝‘0)) |
35 | 28, 30, 34 | jca32 516 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0)))) |
36 | 1 | clwwlknbp 28399 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁)) |
37 | 36 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁)) |
38 | 37 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁)) |
39 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎‘0) = 𝑋) |
40 | 39 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘0) = 𝑋) |
41 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘(𝑁 − 2)) = 𝑋) |
42 | 39 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → 𝑋 = (𝑎‘0)) |
43 | 42 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑎‘0)) |
44 | 41, 43 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘(𝑁 − 2)) = (𝑎‘0)) |
45 | 38, 40, 44 | jca32 516 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0)))) |
46 | | eqtr3 2764 |
. . . . . . . . . . . . . . . . 17
⊢
(((♯‘𝑝)
= 𝑁 ∧
(♯‘𝑎) = 𝑁) → (♯‘𝑝) = (♯‘𝑎)) |
47 | 46 | expcom 414 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑎) =
𝑁 →
((♯‘𝑝) = 𝑁 → (♯‘𝑝) = (♯‘𝑎))) |
48 | 47 | ad2antlr 724 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → ((♯‘𝑝) = 𝑁 → (♯‘𝑝) = (♯‘𝑎))) |
49 | 48 | com12 32 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑝) =
𝑁 → (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → (♯‘𝑝) = (♯‘𝑎))) |
50 | 49 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) → (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → (♯‘𝑝) = (♯‘𝑎))) |
51 | 50 | imp 407 |
. . . . . . . . . . . 12
⊢ ((((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0)))) → (♯‘𝑝) = (♯‘𝑎)) |
52 | 35, 45, 51 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (♯‘𝑝) = (♯‘𝑎)) |
53 | 52 | 3ad2ant2 1133 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (♯‘𝑝) = (♯‘𝑎)) |
54 | 27 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (♯‘𝑝) = 𝑁) |
55 | 54 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (♯‘𝑝) = 𝑁) |
56 | 55 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → 𝑁 = (♯‘𝑝)) |
57 | 56 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑁 = (♯‘𝑝)) |
58 | 57 | oveq1d 7290 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑁 − 2) = ((♯‘𝑝) − 2)) |
59 | 58 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix (𝑁 − 2)) = (𝑝 prefix ((♯‘𝑝) − 2))) |
60 | 58 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎 prefix (𝑁 − 2)) = (𝑎 prefix ((♯‘𝑝) − 2))) |
61 | 59, 60 | eqeq12d 2754 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ↔ (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)))) |
62 | 61 | biimpcd 248 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)))) |
63 | 62 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)))) |
64 | 63 | impcom 408 |
. . . . . . . . . . . 12
⊢
(((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2))) |
65 | 55 | oveq1d 7290 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → ((♯‘𝑝) − 2) = (𝑁 − 2)) |
66 | 65 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘((♯‘𝑝) − 2)) = (𝑝‘(𝑁 − 2))) |
67 | 66, 31 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘((♯‘𝑝) − 2)) = 𝑋) |
68 | 67 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘((♯‘𝑝) − 2)) = 𝑋) |
69 | 41 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑎‘(𝑁 − 2))) |
70 | 69 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑋 = (𝑎‘(𝑁 − 2))) |
71 | 58 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎‘(𝑁 − 2)) = (𝑎‘((♯‘𝑝) − 2))) |
72 | 70, 71 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑋 = (𝑎‘((♯‘𝑝) − 2))) |
73 | 68, 72 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2))) |
74 | 73 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2))) |
75 | | lsw 14267 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 ∈ Word 𝑉 → (lastS‘𝑝) = (𝑝‘((♯‘𝑝) − 1))) |
76 | | fvoveq1 7298 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝑝) =
𝑁 → (𝑝‘((♯‘𝑝) − 1)) = (𝑝‘(𝑁 − 1))) |
77 | 75, 76 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) → (lastS‘𝑝) = (𝑝‘(𝑁 − 1))) |
78 | 26, 77 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (lastS‘𝑝) = (𝑝‘(𝑁 − 1))) |
79 | 78 | eqcomd 2744 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑝‘(𝑁 − 1)) = (lastS‘𝑝)) |
80 | 79 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘(𝑁 − 1)) = (lastS‘𝑝)) |
81 | | lsw 14267 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 ∈ Word 𝑉 → (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1))) |
82 | 81 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1))) |
83 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 = (♯‘𝑎) → (𝑁 − 1) = ((♯‘𝑎) − 1)) |
84 | 83 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((♯‘𝑎) =
𝑁 → (𝑁 − 1) = ((♯‘𝑎) − 1)) |
85 | 84 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((♯‘𝑎) =
𝑁 → (𝑎‘(𝑁 − 1)) = (𝑎‘((♯‘𝑎) − 1))) |
86 | 85 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝑎) =
𝑁 →
((lastS‘𝑎) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1)))) |
87 | 86 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → ((lastS‘𝑎) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1)))) |
88 | 82, 87 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → (lastS‘𝑎) = (𝑎‘(𝑁 − 1))) |
89 | 36, 88 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (lastS‘𝑎) = (𝑎‘(𝑁 − 1))) |
90 | 89 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎)) |
91 | 90 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎)) |
92 | 91 | ad2antrl 725 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎)) |
93 | 80, 92 | eqeq12d 2754 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑝) = (lastS‘𝑎))) |
94 | 93 | biimpd 228 |
. . . . . . . . . . . . . 14
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)) → (lastS‘𝑝) = (lastS‘𝑎))) |
95 | 94 | adantld 491 |
. . . . . . . . . . . . 13
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → (lastS‘𝑝) = (lastS‘𝑎))) |
96 | 95 | imp 407 |
. . . . . . . . . . . 12
⊢
(((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (lastS‘𝑝) = (lastS‘𝑎)) |
97 | 64, 74, 96 | 3jca 1127 |
. . . . . . . . . . 11
⊢
(((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎))) |
98 | 97 | 3adant1 1129 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎))) |
99 | 1 | clwwlknwrd 28398 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → 𝑝 ∈ Word 𝑉) |
100 | 99 | ad3antrrr 727 |
. . . . . . . . . . . 12
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑝 ∈ Word 𝑉) |
101 | 100 | 3ad2ant2 1133 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑝 ∈ Word 𝑉) |
102 | 1 | clwwlknwrd 28398 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → 𝑎 ∈ Word 𝑉) |
103 | 102 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → 𝑎 ∈ Word 𝑉) |
104 | 103 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑎 ∈ Word 𝑉) |
105 | 104 | 3ad2ant2 1133 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑎 ∈ Word 𝑉) |
106 | | clwwlknlen 28396 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (♯‘𝑝) = 𝑁) |
107 | | eluz2b1 12659 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) |
108 | | breq2 5078 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 = (♯‘𝑝) → (1 < 𝑁 ↔ 1 <
(♯‘𝑝))) |
109 | 108 | eqcoms 2746 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝑝) =
𝑁 → (1 < 𝑁 ↔ 1 <
(♯‘𝑝))) |
110 | 109 | biimpcd 248 |
. . . . . . . . . . . . . . . 16
⊢ (1 <
𝑁 →
((♯‘𝑝) = 𝑁 → 1 <
(♯‘𝑝))) |
111 | 107, 110 | simplbiim 505 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘2) → ((♯‘𝑝) = 𝑁 → 1 < (♯‘𝑝))) |
112 | 14, 106, 111 | syl2imc 41 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ≥‘3)
→ 1 < (♯‘𝑝))) |
113 | 112 | ad3antrrr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑁 ∈ (ℤ≥‘3)
→ 1 < (♯‘𝑝))) |
114 | 113 | impcom 408 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))) → 1 < (♯‘𝑝)) |
115 | 114 | 3adant3 1131 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 1 <
(♯‘𝑝)) |
116 | | 2swrd2eqwrdeq 14666 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ Word 𝑉 ∧ 𝑎 ∈ Word 𝑉 ∧ 1 < (♯‘𝑝)) → (𝑝 = 𝑎 ↔ ((♯‘𝑝) = (♯‘𝑎) ∧ ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎))))) |
117 | 101, 105,
115, 116 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝 = 𝑎 ↔ ((♯‘𝑝) = (♯‘𝑎) ∧ ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎))))) |
118 | 53, 98, 117 | mpbir2and 710 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑝 = 𝑎) |
119 | 118 | 3exp 1118 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘3) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎))) |
120 | 119 | 3ad2ant3 1134 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎))) |
121 | 25, 120 | sylbid 239 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎))) |
122 | 121 | imp 407 |
. . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎)) |
123 | 13, 122 | syl5bi 241 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (〈(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))〉 = 〈(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))〉 → 𝑝 = 𝑎)) |
124 | 10, 123 | sylbid 239 |
. . 3
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → ((𝑇‘𝑝) = (𝑇‘𝑎) → 𝑝 = 𝑎)) |
125 | 124 | ralrimivva 3123 |
. 2
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ∀𝑝 ∈
(𝑋𝐶𝑁)∀𝑎 ∈ (𝑋𝐶𝑁)((𝑇‘𝑝) = (𝑇‘𝑎) → 𝑝 = 𝑎)) |
126 | | dff13 7128 |
. 2
⊢ (𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋)) ↔ (𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋)) ∧ ∀𝑝 ∈ (𝑋𝐶𝑁)∀𝑎 ∈ (𝑋𝐶𝑁)((𝑇‘𝑝) = (𝑇‘𝑎) → 𝑝 = 𝑎))) |
127 | 5, 125, 126 | sylanbrc 583 |
1
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋))) |