MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2f1 Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2f1 30376
Description: 𝑇 is a 1-1 function. (Contributed by AV, 26-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 23-Feb-2022.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
numclwwlk.t 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
Assertion
Ref Expression
numclwwlk1lem2f1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑢,𝐶   𝑢,𝐹   𝑢,𝐺,𝑤   𝑢,𝑁   𝑢,𝑉   𝑢,𝑋   𝑢,𝑇
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑇(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2f1
Dummy variables 𝑎 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 extwwlkfab.v . . 3 𝑉 = (Vtx‘𝐺)
2 extwwlkfab.c . . 3 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
3 extwwlkfab.f . . 3 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
4 numclwwlk.t . . 3 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
51, 2, 3, 4numclwwlk1lem2f 30374 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋)))
61, 2, 3, 4numclwwlk1lem2fv 30375 . . . . . 6 (𝑝 ∈ (𝑋𝐶𝑁) → (𝑇𝑝) = ⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩)
76ad2antrl 728 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (𝑇𝑝) = ⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩)
81, 2, 3, 4numclwwlk1lem2fv 30375 . . . . . 6 (𝑎 ∈ (𝑋𝐶𝑁) → (𝑇𝑎) = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩)
98ad2antll 729 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (𝑇𝑎) = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩)
107, 9eqeq12d 2753 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → ((𝑇𝑝) = (𝑇𝑎) ↔ ⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩))
11 ovex 7464 . . . . . 6 (𝑝 prefix (𝑁 − 2)) ∈ V
12 fvex 6919 . . . . . 6 (𝑝‘(𝑁 − 1)) ∈ V
1311, 12opth 5481 . . . . 5 (⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩ ↔ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))))
14 uzuzle23 12931 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
1522clwwlkel 30368 . . . . . . . . . . 11 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑝 ∈ (𝑋𝐶𝑁) ↔ (𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑝‘(𝑁 − 2)) = 𝑋)))
16 isclwwlknon 30110 . . . . . . . . . . . 12 (𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋))
1716anbi1i 624 . . . . . . . . . . 11 ((𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ↔ ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋))
1815, 17bitrdi 287 . . . . . . . . . 10 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑝 ∈ (𝑋𝐶𝑁) ↔ ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋)))
1922clwwlkel 30368 . . . . . . . . . . 11 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑎 ∈ (𝑋𝐶𝑁) ↔ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)))
20 isclwwlknon 30110 . . . . . . . . . . . 12 (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋))
2120anbi1i 624 . . . . . . . . . . 11 ((𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) ↔ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))
2219, 21bitrdi 287 . . . . . . . . . 10 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑎 ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)))
2318, 22anbi12d 632 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))))
2414, 23sylan2 593 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))))
25243adant1 1131 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))))
261clwwlknbp 30054 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁))
2726adantr 480 . . . . . . . . . . . . . 14 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁))
2827adantr 480 . . . . . . . . . . . . 13 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁))
29 simpr 484 . . . . . . . . . . . . . 14 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (𝑝‘0) = 𝑋)
3029adantr 480 . . . . . . . . . . . . 13 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘0) = 𝑋)
31 simpr 484 . . . . . . . . . . . . . 14 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘(𝑁 − 2)) = 𝑋)
3229eqcomd 2743 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → 𝑋 = (𝑝‘0))
3332adantr 480 . . . . . . . . . . . . . 14 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑝‘0))
3431, 33eqtrd 2777 . . . . . . . . . . . . 13 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘(𝑁 − 2)) = (𝑝‘0))
3528, 30, 34jca32 515 . . . . . . . . . . . 12 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))))
361clwwlknbp 30054 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁))
3736adantr 480 . . . . . . . . . . . . . 14 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁))
3837adantr 480 . . . . . . . . . . . . 13 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁))
39 simpr 484 . . . . . . . . . . . . . 14 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎‘0) = 𝑋)
4039adantr 480 . . . . . . . . . . . . 13 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘0) = 𝑋)
41 simpr 484 . . . . . . . . . . . . . 14 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘(𝑁 − 2)) = 𝑋)
4239eqcomd 2743 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → 𝑋 = (𝑎‘0))
4342adantr 480 . . . . . . . . . . . . . 14 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑎‘0))
4441, 43eqtrd 2777 . . . . . . . . . . . . 13 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘(𝑁 − 2)) = (𝑎‘0))
4538, 40, 44jca32 515 . . . . . . . . . . . 12 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))))
46 eqtr3 2763 . . . . . . . . . . . . . . . . 17 (((♯‘𝑝) = 𝑁 ∧ (♯‘𝑎) = 𝑁) → (♯‘𝑝) = (♯‘𝑎))
4746expcom 413 . . . . . . . . . . . . . . . 16 ((♯‘𝑎) = 𝑁 → ((♯‘𝑝) = 𝑁 → (♯‘𝑝) = (♯‘𝑎)))
4847ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → ((♯‘𝑝) = 𝑁 → (♯‘𝑝) = (♯‘𝑎)))
4948com12 32 . . . . . . . . . . . . . 14 ((♯‘𝑝) = 𝑁 → (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → (♯‘𝑝) = (♯‘𝑎)))
5049ad2antlr 727 . . . . . . . . . . . . 13 (((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) → (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → (♯‘𝑝) = (♯‘𝑎)))
5150imp 406 . . . . . . . . . . . 12 ((((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0)))) → (♯‘𝑝) = (♯‘𝑎))
5235, 45, 51syl2an 596 . . . . . . . . . . 11 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (♯‘𝑝) = (♯‘𝑎))
53523ad2ant2 1135 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (♯‘𝑝) = (♯‘𝑎))
5427simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (♯‘𝑝) = 𝑁)
5554adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (♯‘𝑝) = 𝑁)
5655eqcomd 2743 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → 𝑁 = (♯‘𝑝))
5756adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑁 = (♯‘𝑝))
5857oveq1d 7446 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑁 − 2) = ((♯‘𝑝) − 2))
5958oveq2d 7447 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix (𝑁 − 2)) = (𝑝 prefix ((♯‘𝑝) − 2)))
6058oveq2d 7447 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎 prefix (𝑁 − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)))
6159, 60eqeq12d 2753 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ↔ (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2))))
6261biimpcd 249 . . . . . . . . . . . . . 14 ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2))))
6362adantr 480 . . . . . . . . . . . . 13 (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2))))
6463impcom 407 . . . . . . . . . . . 12 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)))
6555oveq1d 7446 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → ((♯‘𝑝) − 2) = (𝑁 − 2))
6665fveq2d 6910 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘((♯‘𝑝) − 2)) = (𝑝‘(𝑁 − 2)))
6766, 31eqtrd 2777 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘((♯‘𝑝) − 2)) = 𝑋)
6867adantr 480 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘((♯‘𝑝) − 2)) = 𝑋)
6941eqcomd 2743 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑎‘(𝑁 − 2)))
7069adantl 481 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑋 = (𝑎‘(𝑁 − 2)))
7158fveq2d 6910 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎‘(𝑁 − 2)) = (𝑎‘((♯‘𝑝) − 2)))
7270, 71eqtrd 2777 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑋 = (𝑎‘((♯‘𝑝) − 2)))
7368, 72eqtrd 2777 . . . . . . . . . . . . 13 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)))
7473adantr 480 . . . . . . . . . . . 12 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)))
75 lsw 14602 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ Word 𝑉 → (lastS‘𝑝) = (𝑝‘((♯‘𝑝) − 1)))
76 fvoveq1 7454 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑝) = 𝑁 → (𝑝‘((♯‘𝑝) − 1)) = (𝑝‘(𝑁 − 1)))
7775, 76sylan9eq 2797 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) → (lastS‘𝑝) = (𝑝‘(𝑁 − 1)))
7826, 77syl 17 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (lastS‘𝑝) = (𝑝‘(𝑁 − 1)))
7978eqcomd 2743 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑝‘(𝑁 − 1)) = (lastS‘𝑝))
8079ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘(𝑁 − 1)) = (lastS‘𝑝))
81 lsw 14602 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ Word 𝑉 → (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1)))
8281adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1)))
83 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = (♯‘𝑎) → (𝑁 − 1) = ((♯‘𝑎) − 1))
8483eqcoms 2745 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑎) = 𝑁 → (𝑁 − 1) = ((♯‘𝑎) − 1))
8584fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑎) = 𝑁 → (𝑎‘(𝑁 − 1)) = (𝑎‘((♯‘𝑎) − 1)))
8685eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑎) = 𝑁 → ((lastS‘𝑎) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1))))
8786adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → ((lastS‘𝑎) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1))))
8882, 87mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → (lastS‘𝑎) = (𝑎‘(𝑁 − 1)))
8936, 88syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (lastS‘𝑎) = (𝑎‘(𝑁 − 1)))
9089eqcomd 2743 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎))
9190adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎))
9291ad2antrl 728 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎))
9380, 92eqeq12d 2753 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑝) = (lastS‘𝑎)))
9493biimpd 229 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)) → (lastS‘𝑝) = (lastS‘𝑎)))
9594adantld 490 . . . . . . . . . . . . 13 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → (lastS‘𝑝) = (lastS‘𝑎)))
9695imp 406 . . . . . . . . . . . 12 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (lastS‘𝑝) = (lastS‘𝑎))
9764, 74, 963jca 1129 . . . . . . . . . . 11 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))
98973adant1 1131 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))
991clwwlknwrd 30053 . . . . . . . . . . . . 13 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → 𝑝 ∈ Word 𝑉)
10099ad3antrrr 730 . . . . . . . . . . . 12 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑝 ∈ Word 𝑉)
1011003ad2ant2 1135 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑝 ∈ Word 𝑉)
1021clwwlknwrd 30053 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → 𝑎 ∈ Word 𝑉)
103102adantr 480 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → 𝑎 ∈ Word 𝑉)
104103ad2antrl 728 . . . . . . . . . . . 12 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑎 ∈ Word 𝑉)
1051043ad2ant2 1135 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑎 ∈ Word 𝑉)
106 clwwlknlen 30051 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (♯‘𝑝) = 𝑁)
107 eluz2b1 12961 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
108 breq2 5147 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑝) → (1 < 𝑁 ↔ 1 < (♯‘𝑝)))
109108eqcoms 2745 . . . . . . . . . . . . . . . . 17 ((♯‘𝑝) = 𝑁 → (1 < 𝑁 ↔ 1 < (♯‘𝑝)))
110109biimpcd 249 . . . . . . . . . . . . . . . 16 (1 < 𝑁 → ((♯‘𝑝) = 𝑁 → 1 < (♯‘𝑝)))
111107, 110simplbiim 504 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((♯‘𝑝) = 𝑁 → 1 < (♯‘𝑝)))
11214, 106, 111syl2imc 41 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ‘3) → 1 < (♯‘𝑝)))
113112ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑁 ∈ (ℤ‘3) → 1 < (♯‘𝑝)))
114113impcom 407 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))) → 1 < (♯‘𝑝))
1151143adant3 1133 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 1 < (♯‘𝑝))
116 2swrd2eqwrdeq 14992 . . . . . . . . . . 11 ((𝑝 ∈ Word 𝑉𝑎 ∈ Word 𝑉 ∧ 1 < (♯‘𝑝)) → (𝑝 = 𝑎 ↔ ((♯‘𝑝) = (♯‘𝑎) ∧ ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))))
117101, 105, 115, 116syl3anc 1373 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝 = 𝑎 ↔ ((♯‘𝑝) = (♯‘𝑎) ∧ ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))))
11853, 98, 117mpbir2and 713 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑝 = 𝑎)
1191183exp 1120 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎)))
1201193ad2ant3 1136 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎)))
12125, 120sylbid 240 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎)))
122121imp 406 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎))
12313, 122biimtrid 242 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩ → 𝑝 = 𝑎))
12410, 123sylbid 240 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → ((𝑇𝑝) = (𝑇𝑎) → 𝑝 = 𝑎))
125124ralrimivva 3202 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∀𝑝 ∈ (𝑋𝐶𝑁)∀𝑎 ∈ (𝑋𝐶𝑁)((𝑇𝑝) = (𝑇𝑎) → 𝑝 = 𝑎))
126 dff13 7275 . 2 (𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋)) ↔ (𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋)) ∧ ∀𝑝 ∈ (𝑋𝐶𝑁)∀𝑎 ∈ (𝑋𝐶𝑁)((𝑇𝑝) = (𝑇𝑎) → 𝑝 = 𝑎)))
1275, 125, 126sylanbrc 583 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  {crab 3436  cop 4632   class class class wbr 5143  cmpt 5225   × cxp 5683  wf 6557  1-1wf1 6558  cfv 6561  (class class class)co 7431  cmpo 7433  0cc0 11155  1c1 11156   < clt 11295  cmin 11492  2c2 12321  3c3 12322  cz 12613  cuz 12878  chash 14369  Word cword 14552  lastSclsw 14600   prefix cpfx 14708  Vtxcvtx 29013  USGraphcusgr 29166   NeighbVtx cnbgr 29349   ClWWalksN cclwwlkn 30043  ClWWalksNOncclwwlknon 30106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-s2 14887  df-edg 29065  df-upgr 29099  df-umgr 29100  df-usgr 29168  df-nbgr 29350  df-wwlks 29850  df-wwlksn 29851  df-clwwlk 30001  df-clwwlkn 30044  df-clwwlknon 30107
This theorem is referenced by:  numclwwlk1lem2f1o  30378
  Copyright terms: Public domain W3C validator