MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2f1 Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2f1 30389
Description: 𝑇 is a 1-1 function. (Contributed by AV, 26-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 23-Feb-2022.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
numclwwlk.t 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
Assertion
Ref Expression
numclwwlk1lem2f1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑢,𝐶   𝑢,𝐹   𝑢,𝐺,𝑤   𝑢,𝑁   𝑢,𝑉   𝑢,𝑋   𝑢,𝑇
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑇(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2f1
Dummy variables 𝑎 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 extwwlkfab.v . . 3 𝑉 = (Vtx‘𝐺)
2 extwwlkfab.c . . 3 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
3 extwwlkfab.f . . 3 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
4 numclwwlk.t . . 3 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
51, 2, 3, 4numclwwlk1lem2f 30387 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋)))
61, 2, 3, 4numclwwlk1lem2fv 30388 . . . . . 6 (𝑝 ∈ (𝑋𝐶𝑁) → (𝑇𝑝) = ⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩)
76ad2antrl 727 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (𝑇𝑝) = ⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩)
81, 2, 3, 4numclwwlk1lem2fv 30388 . . . . . 6 (𝑎 ∈ (𝑋𝐶𝑁) → (𝑇𝑎) = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩)
98ad2antll 728 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (𝑇𝑎) = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩)
107, 9eqeq12d 2756 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → ((𝑇𝑝) = (𝑇𝑎) ↔ ⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩))
11 ovex 7481 . . . . . 6 (𝑝 prefix (𝑁 − 2)) ∈ V
12 fvex 6933 . . . . . 6 (𝑝‘(𝑁 − 1)) ∈ V
1311, 12opth 5496 . . . . 5 (⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩ ↔ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))))
14 uzuzle23 12954 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
1522clwwlkel 30381 . . . . . . . . . . 11 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑝 ∈ (𝑋𝐶𝑁) ↔ (𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑝‘(𝑁 − 2)) = 𝑋)))
16 isclwwlknon 30123 . . . . . . . . . . . 12 (𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋))
1716anbi1i 623 . . . . . . . . . . 11 ((𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ↔ ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋))
1815, 17bitrdi 287 . . . . . . . . . 10 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑝 ∈ (𝑋𝐶𝑁) ↔ ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋)))
1922clwwlkel 30381 . . . . . . . . . . 11 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑎 ∈ (𝑋𝐶𝑁) ↔ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)))
20 isclwwlknon 30123 . . . . . . . . . . . 12 (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋))
2120anbi1i 623 . . . . . . . . . . 11 ((𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) ↔ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))
2219, 21bitrdi 287 . . . . . . . . . 10 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑎 ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)))
2318, 22anbi12d 631 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))))
2414, 23sylan2 592 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))))
25243adant1 1130 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))))
261clwwlknbp 30067 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁))
2726adantr 480 . . . . . . . . . . . . . 14 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁))
2827adantr 480 . . . . . . . . . . . . 13 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁))
29 simpr 484 . . . . . . . . . . . . . 14 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (𝑝‘0) = 𝑋)
3029adantr 480 . . . . . . . . . . . . 13 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘0) = 𝑋)
31 simpr 484 . . . . . . . . . . . . . 14 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘(𝑁 − 2)) = 𝑋)
3229eqcomd 2746 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → 𝑋 = (𝑝‘0))
3332adantr 480 . . . . . . . . . . . . . 14 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑝‘0))
3431, 33eqtrd 2780 . . . . . . . . . . . . 13 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘(𝑁 − 2)) = (𝑝‘0))
3528, 30, 34jca32 515 . . . . . . . . . . . 12 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))))
361clwwlknbp 30067 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁))
3736adantr 480 . . . . . . . . . . . . . 14 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁))
3837adantr 480 . . . . . . . . . . . . 13 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁))
39 simpr 484 . . . . . . . . . . . . . 14 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎‘0) = 𝑋)
4039adantr 480 . . . . . . . . . . . . 13 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘0) = 𝑋)
41 simpr 484 . . . . . . . . . . . . . 14 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘(𝑁 − 2)) = 𝑋)
4239eqcomd 2746 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → 𝑋 = (𝑎‘0))
4342adantr 480 . . . . . . . . . . . . . 14 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑎‘0))
4441, 43eqtrd 2780 . . . . . . . . . . . . 13 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘(𝑁 − 2)) = (𝑎‘0))
4538, 40, 44jca32 515 . . . . . . . . . . . 12 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))))
46 eqtr3 2766 . . . . . . . . . . . . . . . . 17 (((♯‘𝑝) = 𝑁 ∧ (♯‘𝑎) = 𝑁) → (♯‘𝑝) = (♯‘𝑎))
4746expcom 413 . . . . . . . . . . . . . . . 16 ((♯‘𝑎) = 𝑁 → ((♯‘𝑝) = 𝑁 → (♯‘𝑝) = (♯‘𝑎)))
4847ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → ((♯‘𝑝) = 𝑁 → (♯‘𝑝) = (♯‘𝑎)))
4948com12 32 . . . . . . . . . . . . . 14 ((♯‘𝑝) = 𝑁 → (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → (♯‘𝑝) = (♯‘𝑎)))
5049ad2antlr 726 . . . . . . . . . . . . 13 (((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) → (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → (♯‘𝑝) = (♯‘𝑎)))
5150imp 406 . . . . . . . . . . . 12 ((((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0)))) → (♯‘𝑝) = (♯‘𝑎))
5235, 45, 51syl2an 595 . . . . . . . . . . 11 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (♯‘𝑝) = (♯‘𝑎))
53523ad2ant2 1134 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (♯‘𝑝) = (♯‘𝑎))
5427simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (♯‘𝑝) = 𝑁)
5554adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (♯‘𝑝) = 𝑁)
5655eqcomd 2746 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → 𝑁 = (♯‘𝑝))
5756adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑁 = (♯‘𝑝))
5857oveq1d 7463 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑁 − 2) = ((♯‘𝑝) − 2))
5958oveq2d 7464 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix (𝑁 − 2)) = (𝑝 prefix ((♯‘𝑝) − 2)))
6058oveq2d 7464 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎 prefix (𝑁 − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)))
6159, 60eqeq12d 2756 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ↔ (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2))))
6261biimpcd 249 . . . . . . . . . . . . . 14 ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2))))
6362adantr 480 . . . . . . . . . . . . 13 (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2))))
6463impcom 407 . . . . . . . . . . . 12 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)))
6555oveq1d 7463 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → ((♯‘𝑝) − 2) = (𝑁 − 2))
6665fveq2d 6924 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘((♯‘𝑝) − 2)) = (𝑝‘(𝑁 − 2)))
6766, 31eqtrd 2780 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘((♯‘𝑝) − 2)) = 𝑋)
6867adantr 480 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘((♯‘𝑝) − 2)) = 𝑋)
6941eqcomd 2746 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑎‘(𝑁 − 2)))
7069adantl 481 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑋 = (𝑎‘(𝑁 − 2)))
7158fveq2d 6924 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎‘(𝑁 − 2)) = (𝑎‘((♯‘𝑝) − 2)))
7270, 71eqtrd 2780 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑋 = (𝑎‘((♯‘𝑝) − 2)))
7368, 72eqtrd 2780 . . . . . . . . . . . . 13 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)))
7473adantr 480 . . . . . . . . . . . 12 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)))
75 lsw 14612 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ Word 𝑉 → (lastS‘𝑝) = (𝑝‘((♯‘𝑝) − 1)))
76 fvoveq1 7471 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑝) = 𝑁 → (𝑝‘((♯‘𝑝) − 1)) = (𝑝‘(𝑁 − 1)))
7775, 76sylan9eq 2800 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) → (lastS‘𝑝) = (𝑝‘(𝑁 − 1)))
7826, 77syl 17 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (lastS‘𝑝) = (𝑝‘(𝑁 − 1)))
7978eqcomd 2746 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑝‘(𝑁 − 1)) = (lastS‘𝑝))
8079ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘(𝑁 − 1)) = (lastS‘𝑝))
81 lsw 14612 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ Word 𝑉 → (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1)))
8281adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1)))
83 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = (♯‘𝑎) → (𝑁 − 1) = ((♯‘𝑎) − 1))
8483eqcoms 2748 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑎) = 𝑁 → (𝑁 − 1) = ((♯‘𝑎) − 1))
8584fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑎) = 𝑁 → (𝑎‘(𝑁 − 1)) = (𝑎‘((♯‘𝑎) − 1)))
8685eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑎) = 𝑁 → ((lastS‘𝑎) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1))))
8786adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → ((lastS‘𝑎) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1))))
8882, 87mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → (lastS‘𝑎) = (𝑎‘(𝑁 − 1)))
8936, 88syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (lastS‘𝑎) = (𝑎‘(𝑁 − 1)))
9089eqcomd 2746 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎))
9190adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎))
9291ad2antrl 727 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎))
9380, 92eqeq12d 2756 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑝) = (lastS‘𝑎)))
9493biimpd 229 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)) → (lastS‘𝑝) = (lastS‘𝑎)))
9594adantld 490 . . . . . . . . . . . . 13 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → (lastS‘𝑝) = (lastS‘𝑎)))
9695imp 406 . . . . . . . . . . . 12 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (lastS‘𝑝) = (lastS‘𝑎))
9764, 74, 963jca 1128 . . . . . . . . . . 11 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))
98973adant1 1130 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))
991clwwlknwrd 30066 . . . . . . . . . . . . 13 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → 𝑝 ∈ Word 𝑉)
10099ad3antrrr 729 . . . . . . . . . . . 12 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑝 ∈ Word 𝑉)
1011003ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑝 ∈ Word 𝑉)
1021clwwlknwrd 30066 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → 𝑎 ∈ Word 𝑉)
103102adantr 480 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → 𝑎 ∈ Word 𝑉)
104103ad2antrl 727 . . . . . . . . . . . 12 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑎 ∈ Word 𝑉)
1051043ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑎 ∈ Word 𝑉)
106 clwwlknlen 30064 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (♯‘𝑝) = 𝑁)
107 eluz2b1 12984 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
108 breq2 5170 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑝) → (1 < 𝑁 ↔ 1 < (♯‘𝑝)))
109108eqcoms 2748 . . . . . . . . . . . . . . . . 17 ((♯‘𝑝) = 𝑁 → (1 < 𝑁 ↔ 1 < (♯‘𝑝)))
110109biimpcd 249 . . . . . . . . . . . . . . . 16 (1 < 𝑁 → ((♯‘𝑝) = 𝑁 → 1 < (♯‘𝑝)))
111107, 110simplbiim 504 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((♯‘𝑝) = 𝑁 → 1 < (♯‘𝑝)))
11214, 106, 111syl2imc 41 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ‘3) → 1 < (♯‘𝑝)))
113112ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑁 ∈ (ℤ‘3) → 1 < (♯‘𝑝)))
114113impcom 407 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))) → 1 < (♯‘𝑝))
1151143adant3 1132 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 1 < (♯‘𝑝))
116 2swrd2eqwrdeq 15002 . . . . . . . . . . 11 ((𝑝 ∈ Word 𝑉𝑎 ∈ Word 𝑉 ∧ 1 < (♯‘𝑝)) → (𝑝 = 𝑎 ↔ ((♯‘𝑝) = (♯‘𝑎) ∧ ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))))
117101, 105, 115, 116syl3anc 1371 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝 = 𝑎 ↔ ((♯‘𝑝) = (♯‘𝑎) ∧ ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))))
11853, 98, 117mpbir2and 712 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑝 = 𝑎)
1191183exp 1119 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎)))
1201193ad2ant3 1135 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎)))
12125, 120sylbid 240 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎)))
122121imp 406 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎))
12313, 122biimtrid 242 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩ → 𝑝 = 𝑎))
12410, 123sylbid 240 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → ((𝑇𝑝) = (𝑇𝑎) → 𝑝 = 𝑎))
125124ralrimivva 3208 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∀𝑝 ∈ (𝑋𝐶𝑁)∀𝑎 ∈ (𝑋𝐶𝑁)((𝑇𝑝) = (𝑇𝑎) → 𝑝 = 𝑎))
126 dff13 7292 . 2 (𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋)) ↔ (𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋)) ∧ ∀𝑝 ∈ (𝑋𝐶𝑁)∀𝑎 ∈ (𝑋𝐶𝑁)((𝑇𝑝) = (𝑇𝑎) → 𝑝 = 𝑎)))
1275, 125, 126sylanbrc 582 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cop 4654   class class class wbr 5166  cmpt 5249   × cxp 5698  wf 6569  1-1wf1 6570  cfv 6573  (class class class)co 7448  cmpo 7450  0cc0 11184  1c1 11185   < clt 11324  cmin 11520  2c2 12348  3c3 12349  cz 12639  cuz 12903  chash 14379  Word cword 14562  lastSclsw 14610   prefix cpfx 14718  Vtxcvtx 29031  USGraphcusgr 29184   NeighbVtx cnbgr 29367   ClWWalksN cclwwlkn 30056  ClWWalksNOncclwwlknon 30119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-s2 14897  df-edg 29083  df-upgr 29117  df-umgr 29118  df-usgr 29186  df-nbgr 29368  df-wwlks 29863  df-wwlksn 29864  df-clwwlk 30014  df-clwwlkn 30057  df-clwwlknon 30120
This theorem is referenced by:  numclwwlk1lem2f1o  30391
  Copyright terms: Public domain W3C validator