MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2f1 Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2f1 30386
Description: 𝑇 is a 1-1 function. (Contributed by AV, 26-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 23-Feb-2022.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
numclwwlk.t 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
Assertion
Ref Expression
numclwwlk1lem2f1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑢,𝐶   𝑢,𝐹   𝑢,𝐺,𝑤   𝑢,𝑁   𝑢,𝑉   𝑢,𝑋   𝑢,𝑇
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑇(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2f1
Dummy variables 𝑎 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 extwwlkfab.v . . 3 𝑉 = (Vtx‘𝐺)
2 extwwlkfab.c . . 3 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
3 extwwlkfab.f . . 3 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
4 numclwwlk.t . . 3 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
51, 2, 3, 4numclwwlk1lem2f 30384 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋)))
61, 2, 3, 4numclwwlk1lem2fv 30385 . . . . . 6 (𝑝 ∈ (𝑋𝐶𝑁) → (𝑇𝑝) = ⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩)
76ad2antrl 728 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (𝑇𝑝) = ⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩)
81, 2, 3, 4numclwwlk1lem2fv 30385 . . . . . 6 (𝑎 ∈ (𝑋𝐶𝑁) → (𝑇𝑎) = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩)
98ad2antll 729 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (𝑇𝑎) = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩)
107, 9eqeq12d 2751 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → ((𝑇𝑝) = (𝑇𝑎) ↔ ⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩))
11 ovex 7464 . . . . . 6 (𝑝 prefix (𝑁 − 2)) ∈ V
12 fvex 6920 . . . . . 6 (𝑝‘(𝑁 − 1)) ∈ V
1311, 12opth 5487 . . . . 5 (⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩ ↔ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))))
14 uzuzle23 12929 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
1522clwwlkel 30378 . . . . . . . . . . 11 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑝 ∈ (𝑋𝐶𝑁) ↔ (𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑝‘(𝑁 − 2)) = 𝑋)))
16 isclwwlknon 30120 . . . . . . . . . . . 12 (𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋))
1716anbi1i 624 . . . . . . . . . . 11 ((𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ↔ ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋))
1815, 17bitrdi 287 . . . . . . . . . 10 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑝 ∈ (𝑋𝐶𝑁) ↔ ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋)))
1922clwwlkel 30378 . . . . . . . . . . 11 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑎 ∈ (𝑋𝐶𝑁) ↔ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)))
20 isclwwlknon 30120 . . . . . . . . . . . 12 (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋))
2120anbi1i 624 . . . . . . . . . . 11 ((𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) ↔ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))
2219, 21bitrdi 287 . . . . . . . . . 10 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑎 ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)))
2318, 22anbi12d 632 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))))
2414, 23sylan2 593 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))))
25243adant1 1129 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))))
261clwwlknbp 30064 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁))
2726adantr 480 . . . . . . . . . . . . . 14 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁))
2827adantr 480 . . . . . . . . . . . . 13 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁))
29 simpr 484 . . . . . . . . . . . . . 14 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (𝑝‘0) = 𝑋)
3029adantr 480 . . . . . . . . . . . . 13 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘0) = 𝑋)
31 simpr 484 . . . . . . . . . . . . . 14 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘(𝑁 − 2)) = 𝑋)
3229eqcomd 2741 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → 𝑋 = (𝑝‘0))
3332adantr 480 . . . . . . . . . . . . . 14 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑝‘0))
3431, 33eqtrd 2775 . . . . . . . . . . . . 13 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘(𝑁 − 2)) = (𝑝‘0))
3528, 30, 34jca32 515 . . . . . . . . . . . 12 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))))
361clwwlknbp 30064 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁))
3736adantr 480 . . . . . . . . . . . . . 14 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁))
3837adantr 480 . . . . . . . . . . . . 13 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁))
39 simpr 484 . . . . . . . . . . . . . 14 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎‘0) = 𝑋)
4039adantr 480 . . . . . . . . . . . . 13 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘0) = 𝑋)
41 simpr 484 . . . . . . . . . . . . . 14 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘(𝑁 − 2)) = 𝑋)
4239eqcomd 2741 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → 𝑋 = (𝑎‘0))
4342adantr 480 . . . . . . . . . . . . . 14 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑎‘0))
4441, 43eqtrd 2775 . . . . . . . . . . . . 13 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘(𝑁 − 2)) = (𝑎‘0))
4538, 40, 44jca32 515 . . . . . . . . . . . 12 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))))
46 eqtr3 2761 . . . . . . . . . . . . . . . . 17 (((♯‘𝑝) = 𝑁 ∧ (♯‘𝑎) = 𝑁) → (♯‘𝑝) = (♯‘𝑎))
4746expcom 413 . . . . . . . . . . . . . . . 16 ((♯‘𝑎) = 𝑁 → ((♯‘𝑝) = 𝑁 → (♯‘𝑝) = (♯‘𝑎)))
4847ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → ((♯‘𝑝) = 𝑁 → (♯‘𝑝) = (♯‘𝑎)))
4948com12 32 . . . . . . . . . . . . . 14 ((♯‘𝑝) = 𝑁 → (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → (♯‘𝑝) = (♯‘𝑎)))
5049ad2antlr 727 . . . . . . . . . . . . 13 (((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) → (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → (♯‘𝑝) = (♯‘𝑎)))
5150imp 406 . . . . . . . . . . . 12 ((((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0)))) → (♯‘𝑝) = (♯‘𝑎))
5235, 45, 51syl2an 596 . . . . . . . . . . 11 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (♯‘𝑝) = (♯‘𝑎))
53523ad2ant2 1133 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (♯‘𝑝) = (♯‘𝑎))
5427simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (♯‘𝑝) = 𝑁)
5554adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (♯‘𝑝) = 𝑁)
5655eqcomd 2741 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → 𝑁 = (♯‘𝑝))
5756adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑁 = (♯‘𝑝))
5857oveq1d 7446 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑁 − 2) = ((♯‘𝑝) − 2))
5958oveq2d 7447 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix (𝑁 − 2)) = (𝑝 prefix ((♯‘𝑝) − 2)))
6058oveq2d 7447 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎 prefix (𝑁 − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)))
6159, 60eqeq12d 2751 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ↔ (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2))))
6261biimpcd 249 . . . . . . . . . . . . . 14 ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2))))
6362adantr 480 . . . . . . . . . . . . 13 (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2))))
6463impcom 407 . . . . . . . . . . . 12 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)))
6555oveq1d 7446 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → ((♯‘𝑝) − 2) = (𝑁 − 2))
6665fveq2d 6911 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘((♯‘𝑝) − 2)) = (𝑝‘(𝑁 − 2)))
6766, 31eqtrd 2775 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘((♯‘𝑝) − 2)) = 𝑋)
6867adantr 480 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘((♯‘𝑝) − 2)) = 𝑋)
6941eqcomd 2741 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑎‘(𝑁 − 2)))
7069adantl 481 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑋 = (𝑎‘(𝑁 − 2)))
7158fveq2d 6911 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎‘(𝑁 − 2)) = (𝑎‘((♯‘𝑝) − 2)))
7270, 71eqtrd 2775 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑋 = (𝑎‘((♯‘𝑝) − 2)))
7368, 72eqtrd 2775 . . . . . . . . . . . . 13 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)))
7473adantr 480 . . . . . . . . . . . 12 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)))
75 lsw 14599 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ Word 𝑉 → (lastS‘𝑝) = (𝑝‘((♯‘𝑝) − 1)))
76 fvoveq1 7454 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑝) = 𝑁 → (𝑝‘((♯‘𝑝) − 1)) = (𝑝‘(𝑁 − 1)))
7775, 76sylan9eq 2795 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) → (lastS‘𝑝) = (𝑝‘(𝑁 − 1)))
7826, 77syl 17 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (lastS‘𝑝) = (𝑝‘(𝑁 − 1)))
7978eqcomd 2741 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑝‘(𝑁 − 1)) = (lastS‘𝑝))
8079ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘(𝑁 − 1)) = (lastS‘𝑝))
81 lsw 14599 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ Word 𝑉 → (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1)))
8281adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1)))
83 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = (♯‘𝑎) → (𝑁 − 1) = ((♯‘𝑎) − 1))
8483eqcoms 2743 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑎) = 𝑁 → (𝑁 − 1) = ((♯‘𝑎) − 1))
8584fveq2d 6911 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑎) = 𝑁 → (𝑎‘(𝑁 − 1)) = (𝑎‘((♯‘𝑎) − 1)))
8685eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑎) = 𝑁 → ((lastS‘𝑎) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1))))
8786adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → ((lastS‘𝑎) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1))))
8882, 87mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → (lastS‘𝑎) = (𝑎‘(𝑁 − 1)))
8936, 88syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (lastS‘𝑎) = (𝑎‘(𝑁 − 1)))
9089eqcomd 2741 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎))
9190adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎))
9291ad2antrl 728 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎))
9380, 92eqeq12d 2751 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑝) = (lastS‘𝑎)))
9493biimpd 229 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)) → (lastS‘𝑝) = (lastS‘𝑎)))
9594adantld 490 . . . . . . . . . . . . 13 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → (lastS‘𝑝) = (lastS‘𝑎)))
9695imp 406 . . . . . . . . . . . 12 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (lastS‘𝑝) = (lastS‘𝑎))
9764, 74, 963jca 1127 . . . . . . . . . . 11 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))
98973adant1 1129 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))
991clwwlknwrd 30063 . . . . . . . . . . . . 13 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → 𝑝 ∈ Word 𝑉)
10099ad3antrrr 730 . . . . . . . . . . . 12 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑝 ∈ Word 𝑉)
1011003ad2ant2 1133 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑝 ∈ Word 𝑉)
1021clwwlknwrd 30063 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → 𝑎 ∈ Word 𝑉)
103102adantr 480 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → 𝑎 ∈ Word 𝑉)
104103ad2antrl 728 . . . . . . . . . . . 12 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑎 ∈ Word 𝑉)
1051043ad2ant2 1133 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑎 ∈ Word 𝑉)
106 clwwlknlen 30061 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (♯‘𝑝) = 𝑁)
107 eluz2b1 12959 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
108 breq2 5152 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑝) → (1 < 𝑁 ↔ 1 < (♯‘𝑝)))
109108eqcoms 2743 . . . . . . . . . . . . . . . . 17 ((♯‘𝑝) = 𝑁 → (1 < 𝑁 ↔ 1 < (♯‘𝑝)))
110109biimpcd 249 . . . . . . . . . . . . . . . 16 (1 < 𝑁 → ((♯‘𝑝) = 𝑁 → 1 < (♯‘𝑝)))
111107, 110simplbiim 504 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((♯‘𝑝) = 𝑁 → 1 < (♯‘𝑝)))
11214, 106, 111syl2imc 41 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ‘3) → 1 < (♯‘𝑝)))
113112ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑁 ∈ (ℤ‘3) → 1 < (♯‘𝑝)))
114113impcom 407 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))) → 1 < (♯‘𝑝))
1151143adant3 1131 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 1 < (♯‘𝑝))
116 2swrd2eqwrdeq 14989 . . . . . . . . . . 11 ((𝑝 ∈ Word 𝑉𝑎 ∈ Word 𝑉 ∧ 1 < (♯‘𝑝)) → (𝑝 = 𝑎 ↔ ((♯‘𝑝) = (♯‘𝑎) ∧ ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))))
117101, 105, 115, 116syl3anc 1370 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝 = 𝑎 ↔ ((♯‘𝑝) = (♯‘𝑎) ∧ ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))))
11853, 98, 117mpbir2and 713 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑝 = 𝑎)
1191183exp 1118 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎)))
1201193ad2ant3 1134 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎)))
12125, 120sylbid 240 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎)))
122121imp 406 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎))
12313, 122biimtrid 242 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩ → 𝑝 = 𝑎))
12410, 123sylbid 240 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → ((𝑇𝑝) = (𝑇𝑎) → 𝑝 = 𝑎))
125124ralrimivva 3200 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∀𝑝 ∈ (𝑋𝐶𝑁)∀𝑎 ∈ (𝑋𝐶𝑁)((𝑇𝑝) = (𝑇𝑎) → 𝑝 = 𝑎))
126 dff13 7275 . 2 (𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋)) ↔ (𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋)) ∧ ∀𝑝 ∈ (𝑋𝐶𝑁)∀𝑎 ∈ (𝑋𝐶𝑁)((𝑇𝑝) = (𝑇𝑎) → 𝑝 = 𝑎)))
1275, 125, 126sylanbrc 583 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  {crab 3433  cop 4637   class class class wbr 5148  cmpt 5231   × cxp 5687  wf 6559  1-1wf1 6560  cfv 6563  (class class class)co 7431  cmpo 7433  0cc0 11153  1c1 11154   < clt 11293  cmin 11490  2c2 12319  3c3 12320  cz 12611  cuz 12876  chash 14366  Word cword 14549  lastSclsw 14597   prefix cpfx 14705  Vtxcvtx 29028  USGraphcusgr 29181   NeighbVtx cnbgr 29364   ClWWalksN cclwwlkn 30053  ClWWalksNOncclwwlknon 30116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-s2 14884  df-edg 29080  df-upgr 29114  df-umgr 29115  df-usgr 29183  df-nbgr 29365  df-wwlks 29860  df-wwlksn 29861  df-clwwlk 30011  df-clwwlkn 30054  df-clwwlknon 30117
This theorem is referenced by:  numclwwlk1lem2f1o  30388
  Copyright terms: Public domain W3C validator