MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2f1 Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2f1 30338
Description: 𝑇 is a 1-1 function. (Contributed by AV, 26-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 23-Feb-2022.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
numclwwlk.t 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
Assertion
Ref Expression
numclwwlk1lem2f1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑢,𝐶   𝑢,𝐹   𝑢,𝐺,𝑤   𝑢,𝑁   𝑢,𝑉   𝑢,𝑋   𝑢,𝑇
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑇(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2f1
Dummy variables 𝑎 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 extwwlkfab.v . . 3 𝑉 = (Vtx‘𝐺)
2 extwwlkfab.c . . 3 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
3 extwwlkfab.f . . 3 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
4 numclwwlk.t . . 3 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
51, 2, 3, 4numclwwlk1lem2f 30336 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋)))
61, 2, 3, 4numclwwlk1lem2fv 30337 . . . . . 6 (𝑝 ∈ (𝑋𝐶𝑁) → (𝑇𝑝) = ⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩)
76ad2antrl 728 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (𝑇𝑝) = ⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩)
81, 2, 3, 4numclwwlk1lem2fv 30337 . . . . . 6 (𝑎 ∈ (𝑋𝐶𝑁) → (𝑇𝑎) = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩)
98ad2antll 729 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (𝑇𝑎) = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩)
107, 9eqeq12d 2751 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → ((𝑇𝑝) = (𝑇𝑎) ↔ ⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩))
11 ovex 7438 . . . . . 6 (𝑝 prefix (𝑁 − 2)) ∈ V
12 fvex 6889 . . . . . 6 (𝑝‘(𝑁 − 1)) ∈ V
1311, 12opth 5451 . . . . 5 (⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩ ↔ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))))
14 uzuzle23 12905 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
1522clwwlkel 30330 . . . . . . . . . . 11 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑝 ∈ (𝑋𝐶𝑁) ↔ (𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑝‘(𝑁 − 2)) = 𝑋)))
16 isclwwlknon 30072 . . . . . . . . . . . 12 (𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋))
1716anbi1i 624 . . . . . . . . . . 11 ((𝑝 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ↔ ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋))
1815, 17bitrdi 287 . . . . . . . . . 10 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑝 ∈ (𝑋𝐶𝑁) ↔ ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋)))
1922clwwlkel 30330 . . . . . . . . . . 11 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑎 ∈ (𝑋𝐶𝑁) ↔ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)))
20 isclwwlknon 30072 . . . . . . . . . . . 12 (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋))
2120anbi1i 624 . . . . . . . . . . 11 ((𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) ↔ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))
2219, 21bitrdi 287 . . . . . . . . . 10 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑎 ∈ (𝑋𝐶𝑁) ↔ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)))
2318, 22anbi12d 632 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))))
2414, 23sylan2 593 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))))
25243adant1 1130 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) ↔ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))))
261clwwlknbp 30016 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁))
2726adantr 480 . . . . . . . . . . . . . 14 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁))
2827adantr 480 . . . . . . . . . . . . 13 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁))
29 simpr 484 . . . . . . . . . . . . . 14 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (𝑝‘0) = 𝑋)
3029adantr 480 . . . . . . . . . . . . 13 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘0) = 𝑋)
31 simpr 484 . . . . . . . . . . . . . 14 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘(𝑁 − 2)) = 𝑋)
3229eqcomd 2741 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → 𝑋 = (𝑝‘0))
3332adantr 480 . . . . . . . . . . . . . 14 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑝‘0))
3431, 33eqtrd 2770 . . . . . . . . . . . . 13 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘(𝑁 − 2)) = (𝑝‘0))
3528, 30, 34jca32 515 . . . . . . . . . . . 12 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))))
361clwwlknbp 30016 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁))
3736adantr 480 . . . . . . . . . . . . . 14 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁))
3837adantr 480 . . . . . . . . . . . . 13 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁))
39 simpr 484 . . . . . . . . . . . . . 14 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎‘0) = 𝑋)
4039adantr 480 . . . . . . . . . . . . 13 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘0) = 𝑋)
41 simpr 484 . . . . . . . . . . . . . 14 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘(𝑁 − 2)) = 𝑋)
4239eqcomd 2741 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → 𝑋 = (𝑎‘0))
4342adantr 480 . . . . . . . . . . . . . 14 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑎‘0))
4441, 43eqtrd 2770 . . . . . . . . . . . . 13 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → (𝑎‘(𝑁 − 2)) = (𝑎‘0))
4538, 40, 44jca32 515 . . . . . . . . . . . 12 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))))
46 eqtr3 2757 . . . . . . . . . . . . . . . . 17 (((♯‘𝑝) = 𝑁 ∧ (♯‘𝑎) = 𝑁) → (♯‘𝑝) = (♯‘𝑎))
4746expcom 413 . . . . . . . . . . . . . . . 16 ((♯‘𝑎) = 𝑁 → ((♯‘𝑝) = 𝑁 → (♯‘𝑝) = (♯‘𝑎)))
4847ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → ((♯‘𝑝) = 𝑁 → (♯‘𝑝) = (♯‘𝑎)))
4948com12 32 . . . . . . . . . . . . . 14 ((♯‘𝑝) = 𝑁 → (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → (♯‘𝑝) = (♯‘𝑎)))
5049ad2antlr 727 . . . . . . . . . . . . 13 (((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) → (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0))) → (♯‘𝑝) = (♯‘𝑎)))
5150imp 406 . . . . . . . . . . . 12 ((((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) ∧ ((𝑝‘0) = 𝑋 ∧ (𝑝‘(𝑁 − 2)) = (𝑝‘0))) ∧ ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) ∧ ((𝑎‘0) = 𝑋 ∧ (𝑎‘(𝑁 − 2)) = (𝑎‘0)))) → (♯‘𝑝) = (♯‘𝑎))
5235, 45, 51syl2an 596 . . . . . . . . . . 11 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (♯‘𝑝) = (♯‘𝑎))
53523ad2ant2 1134 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (♯‘𝑝) = (♯‘𝑎))
5427simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) → (♯‘𝑝) = 𝑁)
5554adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (♯‘𝑝) = 𝑁)
5655eqcomd 2741 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → 𝑁 = (♯‘𝑝))
5756adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑁 = (♯‘𝑝))
5857oveq1d 7420 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑁 − 2) = ((♯‘𝑝) − 2))
5958oveq2d 7421 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix (𝑁 − 2)) = (𝑝 prefix ((♯‘𝑝) − 2)))
6058oveq2d 7421 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎 prefix (𝑁 − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)))
6159, 60eqeq12d 2751 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ↔ (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2))))
6261biimpcd 249 . . . . . . . . . . . . . 14 ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2))))
6362adantr 480 . . . . . . . . . . . . 13 (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2))))
6463impcom 407 . . . . . . . . . . . 12 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)))
6555oveq1d 7420 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → ((♯‘𝑝) − 2) = (𝑁 − 2))
6665fveq2d 6880 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘((♯‘𝑝) − 2)) = (𝑝‘(𝑁 − 2)))
6766, 31eqtrd 2770 . . . . . . . . . . . . . . 15 (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) → (𝑝‘((♯‘𝑝) − 2)) = 𝑋)
6867adantr 480 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘((♯‘𝑝) − 2)) = 𝑋)
6941eqcomd 2741 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑎‘(𝑁 − 2)))
7069adantl 481 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑋 = (𝑎‘(𝑁 − 2)))
7158fveq2d 6880 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎‘(𝑁 − 2)) = (𝑎‘((♯‘𝑝) − 2)))
7270, 71eqtrd 2770 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑋 = (𝑎‘((♯‘𝑝) − 2)))
7368, 72eqtrd 2770 . . . . . . . . . . . . 13 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)))
7473adantr 480 . . . . . . . . . . . 12 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)))
75 lsw 14582 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ Word 𝑉 → (lastS‘𝑝) = (𝑝‘((♯‘𝑝) − 1)))
76 fvoveq1 7428 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑝) = 𝑁 → (𝑝‘((♯‘𝑝) − 1)) = (𝑝‘(𝑁 − 1)))
7775, 76sylan9eq 2790 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ Word 𝑉 ∧ (♯‘𝑝) = 𝑁) → (lastS‘𝑝) = (𝑝‘(𝑁 − 1)))
7826, 77syl 17 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (lastS‘𝑝) = (𝑝‘(𝑁 − 1)))
7978eqcomd 2741 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑝‘(𝑁 − 1)) = (lastS‘𝑝))
8079ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑝‘(𝑁 − 1)) = (lastS‘𝑝))
81 lsw 14582 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ Word 𝑉 → (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1)))
8281adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1)))
83 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = (♯‘𝑎) → (𝑁 − 1) = ((♯‘𝑎) − 1))
8483eqcoms 2743 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑎) = 𝑁 → (𝑁 − 1) = ((♯‘𝑎) − 1))
8584fveq2d 6880 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑎) = 𝑁 → (𝑎‘(𝑁 − 1)) = (𝑎‘((♯‘𝑎) − 1)))
8685eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑎) = 𝑁 → ((lastS‘𝑎) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1))))
8786adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → ((lastS‘𝑎) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑎) = (𝑎‘((♯‘𝑎) − 1))))
8882, 87mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = 𝑁) → (lastS‘𝑎) = (𝑎‘(𝑁 − 1)))
8936, 88syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (lastS‘𝑎) = (𝑎‘(𝑁 − 1)))
9089eqcomd 2741 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎))
9190adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎))
9291ad2antrl 728 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑎‘(𝑁 − 1)) = (lastS‘𝑎))
9380, 92eqeq12d 2751 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)) ↔ (lastS‘𝑝) = (lastS‘𝑎)))
9493biimpd 229 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → ((𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)) → (lastS‘𝑝) = (lastS‘𝑎)))
9594adantld 490 . . . . . . . . . . . . 13 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → (lastS‘𝑝) = (lastS‘𝑎)))
9695imp 406 . . . . . . . . . . . 12 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (lastS‘𝑝) = (lastS‘𝑎))
9764, 74, 963jca 1128 . . . . . . . . . . 11 (((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))
98973adant1 1130 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))
991clwwlknwrd 30015 . . . . . . . . . . . . 13 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → 𝑝 ∈ Word 𝑉)
10099ad3antrrr 730 . . . . . . . . . . . 12 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑝 ∈ Word 𝑉)
1011003ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑝 ∈ Word 𝑉)
1021clwwlknwrd 30015 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑁 ClWWalksN 𝐺) → 𝑎 ∈ Word 𝑉)
103102adantr 480 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) → 𝑎 ∈ Word 𝑉)
104103ad2antrl 728 . . . . . . . . . . . 12 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → 𝑎 ∈ Word 𝑉)
1051043ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑎 ∈ Word 𝑉)
106 clwwlknlen 30013 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (♯‘𝑝) = 𝑁)
107 eluz2b1 12935 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
108 breq2 5123 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑝) → (1 < 𝑁 ↔ 1 < (♯‘𝑝)))
109108eqcoms 2743 . . . . . . . . . . . . . . . . 17 ((♯‘𝑝) = 𝑁 → (1 < 𝑁 ↔ 1 < (♯‘𝑝)))
110109biimpcd 249 . . . . . . . . . . . . . . . 16 (1 < 𝑁 → ((♯‘𝑝) = 𝑁 → 1 < (♯‘𝑝)))
111107, 110simplbiim 504 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((♯‘𝑝) = 𝑁 → 1 < (♯‘𝑝)))
11214, 106, 111syl2imc 41 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ‘3) → 1 < (♯‘𝑝)))
113112ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (𝑁 ∈ (ℤ‘3) → 1 < (♯‘𝑝)))
114113impcom 407 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋))) → 1 < (♯‘𝑝))
1151143adant3 1132 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 1 < (♯‘𝑝))
116 2swrd2eqwrdeq 14972 . . . . . . . . . . 11 ((𝑝 ∈ Word 𝑉𝑎 ∈ Word 𝑉 ∧ 1 < (♯‘𝑝)) → (𝑝 = 𝑎 ↔ ((♯‘𝑝) = (♯‘𝑎) ∧ ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))))
117101, 105, 115, 116syl3anc 1373 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → (𝑝 = 𝑎 ↔ ((♯‘𝑝) = (♯‘𝑎) ∧ ((𝑝 prefix ((♯‘𝑝) − 2)) = (𝑎 prefix ((♯‘𝑝) − 2)) ∧ (𝑝‘((♯‘𝑝) − 2)) = (𝑎‘((♯‘𝑝) − 2)) ∧ (lastS‘𝑝) = (lastS‘𝑎)))))
11853, 98, 117mpbir2and 713 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) ∧ ((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1)))) → 𝑝 = 𝑎)
1191183exp 1119 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎)))
1201193ad2ant3 1135 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((((𝑝 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑝‘0) = 𝑋) ∧ (𝑝‘(𝑁 − 2)) = 𝑋) ∧ ((𝑎 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑎‘0) = 𝑋) ∧ (𝑎‘(𝑁 − 2)) = 𝑋)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎)))
12125, 120sylbid 240 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁)) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎)))
122121imp 406 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (((𝑝 prefix (𝑁 − 2)) = (𝑎 prefix (𝑁 − 2)) ∧ (𝑝‘(𝑁 − 1)) = (𝑎‘(𝑁 − 1))) → 𝑝 = 𝑎))
12313, 122biimtrid 242 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → (⟨(𝑝 prefix (𝑁 − 2)), (𝑝‘(𝑁 − 1))⟩ = ⟨(𝑎 prefix (𝑁 − 2)), (𝑎‘(𝑁 − 1))⟩ → 𝑝 = 𝑎))
12410, 123sylbid 240 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑝 ∈ (𝑋𝐶𝑁) ∧ 𝑎 ∈ (𝑋𝐶𝑁))) → ((𝑇𝑝) = (𝑇𝑎) → 𝑝 = 𝑎))
125124ralrimivva 3187 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∀𝑝 ∈ (𝑋𝐶𝑁)∀𝑎 ∈ (𝑋𝐶𝑁)((𝑇𝑝) = (𝑇𝑎) → 𝑝 = 𝑎))
126 dff13 7247 . 2 (𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋)) ↔ (𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋)) ∧ ∀𝑝 ∈ (𝑋𝐶𝑁)∀𝑎 ∈ (𝑋𝐶𝑁)((𝑇𝑝) = (𝑇𝑎) → 𝑝 = 𝑎)))
1275, 125, 126sylanbrc 583 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)–1-1→(𝐹 × (𝐺 NeighbVtx 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {crab 3415  cop 4607   class class class wbr 5119  cmpt 5201   × cxp 5652  wf 6527  1-1wf1 6528  cfv 6531  (class class class)co 7405  cmpo 7407  0cc0 11129  1c1 11130   < clt 11269  cmin 11466  2c2 12295  3c3 12296  cz 12588  cuz 12852  chash 14348  Word cword 14531  lastSclsw 14580   prefix cpfx 14688  Vtxcvtx 28975  USGraphcusgr 29128   NeighbVtx cnbgr 29311   ClWWalksN cclwwlkn 30005  ClWWalksNOncclwwlknon 30068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-s2 14867  df-edg 29027  df-upgr 29061  df-umgr 29062  df-usgr 29130  df-nbgr 29312  df-wwlks 29812  df-wwlksn 29813  df-clwwlk 29963  df-clwwlkn 30006  df-clwwlknon 30069
This theorem is referenced by:  numclwwlk1lem2f1o  30340
  Copyright terms: Public domain W3C validator