Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axdc3lem | Structured version Visualization version GIF version |
Description: The class 𝑆 of finite approximations to the DC sequence is a set. (We derive here the stronger statement that 𝑆 is a subset of a specific set, namely 𝒫 (ω × 𝐴).) (Contributed by Mario Carneiro, 27-Jan-2013.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 18-Mar-2014.) |
Ref | Expression |
---|---|
axdc3lem.1 | ⊢ 𝐴 ∈ V |
axdc3lem.2 | ⊢ 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} |
Ref | Expression |
---|---|
axdc3lem | ⊢ 𝑆 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcomex 10253 | . . . 4 ⊢ ω ∈ V | |
2 | axdc3lem.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | 1, 2 | xpex 7635 | . . 3 ⊢ (ω × 𝐴) ∈ V |
4 | 3 | pwex 5312 | . 2 ⊢ 𝒫 (ω × 𝐴) ∈ V |
5 | axdc3lem.2 | . . 3 ⊢ 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} | |
6 | fssxp 6658 | . . . . . . . . 9 ⊢ (𝑠:suc 𝑛⟶𝐴 → 𝑠 ⊆ (suc 𝑛 × 𝐴)) | |
7 | peano2 7769 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ω → suc 𝑛 ∈ ω) | |
8 | omelon2 7757 | . . . . . . . . . . . 12 ⊢ (ω ∈ V → ω ∈ On) | |
9 | 1, 8 | ax-mp 5 | . . . . . . . . . . 11 ⊢ ω ∈ On |
10 | 9 | onelssi 6394 | . . . . . . . . . 10 ⊢ (suc 𝑛 ∈ ω → suc 𝑛 ⊆ ω) |
11 | xpss1 5619 | . . . . . . . . . 10 ⊢ (suc 𝑛 ⊆ ω → (suc 𝑛 × 𝐴) ⊆ (ω × 𝐴)) | |
12 | 7, 10, 11 | 3syl 18 | . . . . . . . . 9 ⊢ (𝑛 ∈ ω → (suc 𝑛 × 𝐴) ⊆ (ω × 𝐴)) |
13 | 6, 12 | sylan9ss 3939 | . . . . . . . 8 ⊢ ((𝑠:suc 𝑛⟶𝐴 ∧ 𝑛 ∈ ω) → 𝑠 ⊆ (ω × 𝐴)) |
14 | velpw 4544 | . . . . . . . 8 ⊢ (𝑠 ∈ 𝒫 (ω × 𝐴) ↔ 𝑠 ⊆ (ω × 𝐴)) | |
15 | 13, 14 | sylibr 233 | . . . . . . 7 ⊢ ((𝑠:suc 𝑛⟶𝐴 ∧ 𝑛 ∈ ω) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
16 | 15 | ancoms 460 | . . . . . 6 ⊢ ((𝑛 ∈ ω ∧ 𝑠:suc 𝑛⟶𝐴) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
17 | 16 | 3ad2antr1 1188 | . . . . 5 ⊢ ((𝑛 ∈ ω ∧ (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
18 | 17 | rexlimiva 3140 | . . . 4 ⊢ (∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
19 | 18 | abssi 4009 | . . 3 ⊢ {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} ⊆ 𝒫 (ω × 𝐴) |
20 | 5, 19 | eqsstri 3960 | . 2 ⊢ 𝑆 ⊆ 𝒫 (ω × 𝐴) |
21 | 4, 20 | ssexi 5255 | 1 ⊢ 𝑆 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 {cab 2713 ∀wral 3061 ∃wrex 3070 Vcvv 3437 ⊆ wss 3892 ∅c0 4262 𝒫 cpw 4539 × cxp 5598 Oncon0 6281 suc csuc 6283 ⟶wf 6454 ‘cfv 6458 ωcom 7744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-dc 10252 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-om 7745 df-1o 8328 |
This theorem is referenced by: axdc3lem2 10257 axdc3lem4 10259 |
Copyright terms: Public domain | W3C validator |