| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axdc3lem | Structured version Visualization version GIF version | ||
| Description: The class 𝑆 of finite approximations to the DC sequence is a set. (We derive here the stronger statement that 𝑆 is a subset of a specific set, namely 𝒫 (ω × 𝐴).) (Contributed by Mario Carneiro, 27-Jan-2013.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 18-Mar-2014.) |
| Ref | Expression |
|---|---|
| axdc3lem.1 | ⊢ 𝐴 ∈ V |
| axdc3lem.2 | ⊢ 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} |
| Ref | Expression |
|---|---|
| axdc3lem | ⊢ 𝑆 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcomex 10466 | . . . 4 ⊢ ω ∈ V | |
| 2 | axdc3lem.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | 1, 2 | xpex 7752 | . . 3 ⊢ (ω × 𝐴) ∈ V |
| 4 | 3 | pwex 5355 | . 2 ⊢ 𝒫 (ω × 𝐴) ∈ V |
| 5 | axdc3lem.2 | . . 3 ⊢ 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} | |
| 6 | fssxp 6738 | . . . . . . . . 9 ⊢ (𝑠:suc 𝑛⟶𝐴 → 𝑠 ⊆ (suc 𝑛 × 𝐴)) | |
| 7 | peano2 7891 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ω → suc 𝑛 ∈ ω) | |
| 8 | omelon2 7879 | . . . . . . . . . . . 12 ⊢ (ω ∈ V → ω ∈ On) | |
| 9 | 1, 8 | ax-mp 5 | . . . . . . . . . . 11 ⊢ ω ∈ On |
| 10 | 9 | onelssi 6474 | . . . . . . . . . 10 ⊢ (suc 𝑛 ∈ ω → suc 𝑛 ⊆ ω) |
| 11 | xpss1 5678 | . . . . . . . . . 10 ⊢ (suc 𝑛 ⊆ ω → (suc 𝑛 × 𝐴) ⊆ (ω × 𝐴)) | |
| 12 | 7, 10, 11 | 3syl 18 | . . . . . . . . 9 ⊢ (𝑛 ∈ ω → (suc 𝑛 × 𝐴) ⊆ (ω × 𝐴)) |
| 13 | 6, 12 | sylan9ss 3977 | . . . . . . . 8 ⊢ ((𝑠:suc 𝑛⟶𝐴 ∧ 𝑛 ∈ ω) → 𝑠 ⊆ (ω × 𝐴)) |
| 14 | velpw 4585 | . . . . . . . 8 ⊢ (𝑠 ∈ 𝒫 (ω × 𝐴) ↔ 𝑠 ⊆ (ω × 𝐴)) | |
| 15 | 13, 14 | sylibr 234 | . . . . . . 7 ⊢ ((𝑠:suc 𝑛⟶𝐴 ∧ 𝑛 ∈ ω) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
| 16 | 15 | ancoms 458 | . . . . . 6 ⊢ ((𝑛 ∈ ω ∧ 𝑠:suc 𝑛⟶𝐴) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
| 17 | 16 | 3ad2antr1 1189 | . . . . 5 ⊢ ((𝑛 ∈ ω ∧ (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
| 18 | 17 | rexlimiva 3134 | . . . 4 ⊢ (∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
| 19 | 18 | abssi 4050 | . . 3 ⊢ {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} ⊆ 𝒫 (ω × 𝐴) |
| 20 | 5, 19 | eqsstri 4010 | . 2 ⊢ 𝑆 ⊆ 𝒫 (ω × 𝐴) |
| 21 | 4, 20 | ssexi 5297 | 1 ⊢ 𝑆 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 × cxp 5657 Oncon0 6357 suc csuc 6359 ⟶wf 6532 ‘cfv 6536 ωcom 7866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-dc 10465 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-om 7867 df-1o 8485 |
| This theorem is referenced by: axdc3lem2 10470 axdc3lem4 10472 |
| Copyright terms: Public domain | W3C validator |