MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3lem Structured version   Visualization version   GIF version

Theorem axdc3lem 10449
Description: The class 𝑆 of finite approximations to the DC sequence is a set. (We derive here the stronger statement that 𝑆 is a subset of a specific set, namely 𝒫 (ω × 𝐴).) (Contributed by Mario Carneiro, 27-Jan-2013.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 18-Mar-2014.)
Hypotheses
Ref Expression
axdc3lem.1 𝐴 ∈ V
axdc3lem.2 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
Assertion
Ref Expression
axdc3lem 𝑆 ∈ V
Distinct variable group:   𝐴,𝑛,𝑠
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑘,𝑛,𝑠)   𝑆(𝑘,𝑛,𝑠)   𝐹(𝑘,𝑛,𝑠)

Proof of Theorem axdc3lem
StepHypRef Expression
1 dcomex 10446 . . . 4 ω ∈ V
2 axdc3lem.1 . . . 4 𝐴 ∈ V
31, 2xpex 7744 . . 3 (ω × 𝐴) ∈ V
43pwex 5378 . 2 𝒫 (ω × 𝐴) ∈ V
5 axdc3lem.2 . . 3 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
6 fssxp 6745 . . . . . . . . 9 (𝑠:suc 𝑛𝐴𝑠 ⊆ (suc 𝑛 × 𝐴))
7 peano2 7885 . . . . . . . . . 10 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
8 omelon2 7872 . . . . . . . . . . . 12 (ω ∈ V → ω ∈ On)
91, 8ax-mp 5 . . . . . . . . . . 11 ω ∈ On
109onelssi 6479 . . . . . . . . . 10 (suc 𝑛 ∈ ω → suc 𝑛 ⊆ ω)
11 xpss1 5695 . . . . . . . . . 10 (suc 𝑛 ⊆ ω → (suc 𝑛 × 𝐴) ⊆ (ω × 𝐴))
127, 10, 113syl 18 . . . . . . . . 9 (𝑛 ∈ ω → (suc 𝑛 × 𝐴) ⊆ (ω × 𝐴))
136, 12sylan9ss 3995 . . . . . . . 8 ((𝑠:suc 𝑛𝐴𝑛 ∈ ω) → 𝑠 ⊆ (ω × 𝐴))
14 velpw 4607 . . . . . . . 8 (𝑠 ∈ 𝒫 (ω × 𝐴) ↔ 𝑠 ⊆ (ω × 𝐴))
1513, 14sylibr 233 . . . . . . 7 ((𝑠:suc 𝑛𝐴𝑛 ∈ ω) → 𝑠 ∈ 𝒫 (ω × 𝐴))
1615ancoms 458 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑠:suc 𝑛𝐴) → 𝑠 ∈ 𝒫 (ω × 𝐴))
17163ad2antr1 1187 . . . . 5 ((𝑛 ∈ ω ∧ (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))) → 𝑠 ∈ 𝒫 (ω × 𝐴))
1817rexlimiva 3146 . . . 4 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → 𝑠 ∈ 𝒫 (ω × 𝐴))
1918abssi 4067 . . 3 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ 𝒫 (ω × 𝐴)
205, 19eqsstri 4016 . 2 𝑆 ⊆ 𝒫 (ω × 𝐴)
214, 20ssexi 5322 1 𝑆 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2105  {cab 2708  wral 3060  wrex 3069  Vcvv 3473  wss 3948  c0 4322  𝒫 cpw 4602   × cxp 5674  Oncon0 6364  suc csuc 6366  wf 6539  cfv 6543  ωcom 7859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-dc 10445
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-om 7860  df-1o 8470
This theorem is referenced by:  axdc3lem2  10450  axdc3lem4  10452
  Copyright terms: Public domain W3C validator