Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axdc3lem | Structured version Visualization version GIF version |
Description: The class 𝑆 of finite approximations to the DC sequence is a set. (We derive here the stronger statement that 𝑆 is a subset of a specific set, namely 𝒫 (ω × 𝐴).) (Contributed by Mario Carneiro, 27-Jan-2013.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 18-Mar-2014.) |
Ref | Expression |
---|---|
axdc3lem.1 | ⊢ 𝐴 ∈ V |
axdc3lem.2 | ⊢ 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} |
Ref | Expression |
---|---|
axdc3lem | ⊢ 𝑆 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcomex 10187 | . . . 4 ⊢ ω ∈ V | |
2 | axdc3lem.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | 1, 2 | xpex 7594 | . . 3 ⊢ (ω × 𝐴) ∈ V |
4 | 3 | pwex 5306 | . 2 ⊢ 𝒫 (ω × 𝐴) ∈ V |
5 | axdc3lem.2 | . . 3 ⊢ 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} | |
6 | fssxp 6624 | . . . . . . . . 9 ⊢ (𝑠:suc 𝑛⟶𝐴 → 𝑠 ⊆ (suc 𝑛 × 𝐴)) | |
7 | peano2 7724 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ω → suc 𝑛 ∈ ω) | |
8 | omelon2 7713 | . . . . . . . . . . . 12 ⊢ (ω ∈ V → ω ∈ On) | |
9 | 1, 8 | ax-mp 5 | . . . . . . . . . . 11 ⊢ ω ∈ On |
10 | 9 | onelssi 6372 | . . . . . . . . . 10 ⊢ (suc 𝑛 ∈ ω → suc 𝑛 ⊆ ω) |
11 | xpss1 5607 | . . . . . . . . . 10 ⊢ (suc 𝑛 ⊆ ω → (suc 𝑛 × 𝐴) ⊆ (ω × 𝐴)) | |
12 | 7, 10, 11 | 3syl 18 | . . . . . . . . 9 ⊢ (𝑛 ∈ ω → (suc 𝑛 × 𝐴) ⊆ (ω × 𝐴)) |
13 | 6, 12 | sylan9ss 3938 | . . . . . . . 8 ⊢ ((𝑠:suc 𝑛⟶𝐴 ∧ 𝑛 ∈ ω) → 𝑠 ⊆ (ω × 𝐴)) |
14 | velpw 4543 | . . . . . . . 8 ⊢ (𝑠 ∈ 𝒫 (ω × 𝐴) ↔ 𝑠 ⊆ (ω × 𝐴)) | |
15 | 13, 14 | sylibr 233 | . . . . . . 7 ⊢ ((𝑠:suc 𝑛⟶𝐴 ∧ 𝑛 ∈ ω) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
16 | 15 | ancoms 458 | . . . . . 6 ⊢ ((𝑛 ∈ ω ∧ 𝑠:suc 𝑛⟶𝐴) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
17 | 16 | 3ad2antr1 1186 | . . . . 5 ⊢ ((𝑛 ∈ ω ∧ (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
18 | 17 | rexlimiva 3211 | . . . 4 ⊢ (∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
19 | 18 | abssi 4007 | . . 3 ⊢ {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} ⊆ 𝒫 (ω × 𝐴) |
20 | 5, 19 | eqsstri 3959 | . 2 ⊢ 𝑆 ⊆ 𝒫 (ω × 𝐴) |
21 | 4, 20 | ssexi 5249 | 1 ⊢ 𝑆 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 {cab 2716 ∀wral 3065 ∃wrex 3066 Vcvv 3430 ⊆ wss 3891 ∅c0 4261 𝒫 cpw 4538 × cxp 5586 Oncon0 6263 suc csuc 6265 ⟶wf 6426 ‘cfv 6430 ωcom 7700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-dc 10186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-om 7701 df-1o 8281 |
This theorem is referenced by: axdc3lem2 10191 axdc3lem4 10193 |
Copyright terms: Public domain | W3C validator |