MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3lem Structured version   Visualization version   GIF version

Theorem axdc3lem 10256
Description: The class 𝑆 of finite approximations to the DC sequence is a set. (We derive here the stronger statement that 𝑆 is a subset of a specific set, namely 𝒫 (ω × 𝐴).) (Contributed by Mario Carneiro, 27-Jan-2013.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 18-Mar-2014.)
Hypotheses
Ref Expression
axdc3lem.1 𝐴 ∈ V
axdc3lem.2 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
Assertion
Ref Expression
axdc3lem 𝑆 ∈ V
Distinct variable group:   𝐴,𝑛,𝑠
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑘,𝑛,𝑠)   𝑆(𝑘,𝑛,𝑠)   𝐹(𝑘,𝑛,𝑠)

Proof of Theorem axdc3lem
StepHypRef Expression
1 dcomex 10253 . . . 4 ω ∈ V
2 axdc3lem.1 . . . 4 𝐴 ∈ V
31, 2xpex 7635 . . 3 (ω × 𝐴) ∈ V
43pwex 5312 . 2 𝒫 (ω × 𝐴) ∈ V
5 axdc3lem.2 . . 3 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
6 fssxp 6658 . . . . . . . . 9 (𝑠:suc 𝑛𝐴𝑠 ⊆ (suc 𝑛 × 𝐴))
7 peano2 7769 . . . . . . . . . 10 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
8 omelon2 7757 . . . . . . . . . . . 12 (ω ∈ V → ω ∈ On)
91, 8ax-mp 5 . . . . . . . . . . 11 ω ∈ On
109onelssi 6394 . . . . . . . . . 10 (suc 𝑛 ∈ ω → suc 𝑛 ⊆ ω)
11 xpss1 5619 . . . . . . . . . 10 (suc 𝑛 ⊆ ω → (suc 𝑛 × 𝐴) ⊆ (ω × 𝐴))
127, 10, 113syl 18 . . . . . . . . 9 (𝑛 ∈ ω → (suc 𝑛 × 𝐴) ⊆ (ω × 𝐴))
136, 12sylan9ss 3939 . . . . . . . 8 ((𝑠:suc 𝑛𝐴𝑛 ∈ ω) → 𝑠 ⊆ (ω × 𝐴))
14 velpw 4544 . . . . . . . 8 (𝑠 ∈ 𝒫 (ω × 𝐴) ↔ 𝑠 ⊆ (ω × 𝐴))
1513, 14sylibr 233 . . . . . . 7 ((𝑠:suc 𝑛𝐴𝑛 ∈ ω) → 𝑠 ∈ 𝒫 (ω × 𝐴))
1615ancoms 460 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑠:suc 𝑛𝐴) → 𝑠 ∈ 𝒫 (ω × 𝐴))
17163ad2antr1 1188 . . . . 5 ((𝑛 ∈ ω ∧ (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))) → 𝑠 ∈ 𝒫 (ω × 𝐴))
1817rexlimiva 3140 . . . 4 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → 𝑠 ∈ 𝒫 (ω × 𝐴))
1918abssi 4009 . . 3 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ 𝒫 (ω × 𝐴)
205, 19eqsstri 3960 . 2 𝑆 ⊆ 𝒫 (ω × 𝐴)
214, 20ssexi 5255 1 𝑆 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 397  w3a 1087   = wceq 1539  wcel 2104  {cab 2713  wral 3061  wrex 3070  Vcvv 3437  wss 3892  c0 4262  𝒫 cpw 4539   × cxp 5598  Oncon0 6281  suc csuc 6283  wf 6454  cfv 6458  ωcom 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-dc 10252
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466  df-om 7745  df-1o 8328
This theorem is referenced by:  axdc3lem2  10257  axdc3lem4  10259
  Copyright terms: Public domain W3C validator