![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axdc3lem | Structured version Visualization version GIF version |
Description: The class 𝑆 of finite approximations to the DC sequence is a set. (We derive here the stronger statement that 𝑆 is a subset of a specific set, namely 𝒫 (ω × 𝐴).) (Contributed by Mario Carneiro, 27-Jan-2013.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 18-Mar-2014.) |
Ref | Expression |
---|---|
axdc3lem.1 | ⊢ 𝐴 ∈ V |
axdc3lem.2 | ⊢ 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} |
Ref | Expression |
---|---|
axdc3lem | ⊢ 𝑆 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcomex 10490 | . . . 4 ⊢ ω ∈ V | |
2 | axdc3lem.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | 1, 2 | xpex 7761 | . . 3 ⊢ (ω × 𝐴) ∈ V |
4 | 3 | pwex 5384 | . 2 ⊢ 𝒫 (ω × 𝐴) ∈ V |
5 | axdc3lem.2 | . . 3 ⊢ 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} | |
6 | fssxp 6756 | . . . . . . . . 9 ⊢ (𝑠:suc 𝑛⟶𝐴 → 𝑠 ⊆ (suc 𝑛 × 𝐴)) | |
7 | peano2 7902 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ω → suc 𝑛 ∈ ω) | |
8 | omelon2 7889 | . . . . . . . . . . . 12 ⊢ (ω ∈ V → ω ∈ On) | |
9 | 1, 8 | ax-mp 5 | . . . . . . . . . . 11 ⊢ ω ∈ On |
10 | 9 | onelssi 6491 | . . . . . . . . . 10 ⊢ (suc 𝑛 ∈ ω → suc 𝑛 ⊆ ω) |
11 | xpss1 5701 | . . . . . . . . . 10 ⊢ (suc 𝑛 ⊆ ω → (suc 𝑛 × 𝐴) ⊆ (ω × 𝐴)) | |
12 | 7, 10, 11 | 3syl 18 | . . . . . . . . 9 ⊢ (𝑛 ∈ ω → (suc 𝑛 × 𝐴) ⊆ (ω × 𝐴)) |
13 | 6, 12 | sylan9ss 3993 | . . . . . . . 8 ⊢ ((𝑠:suc 𝑛⟶𝐴 ∧ 𝑛 ∈ ω) → 𝑠 ⊆ (ω × 𝐴)) |
14 | velpw 4612 | . . . . . . . 8 ⊢ (𝑠 ∈ 𝒫 (ω × 𝐴) ↔ 𝑠 ⊆ (ω × 𝐴)) | |
15 | 13, 14 | sylibr 233 | . . . . . . 7 ⊢ ((𝑠:suc 𝑛⟶𝐴 ∧ 𝑛 ∈ ω) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
16 | 15 | ancoms 457 | . . . . . 6 ⊢ ((𝑛 ∈ ω ∧ 𝑠:suc 𝑛⟶𝐴) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
17 | 16 | 3ad2antr1 1185 | . . . . 5 ⊢ ((𝑛 ∈ ω ∧ (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
18 | 17 | rexlimiva 3137 | . . . 4 ⊢ (∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘))) → 𝑠 ∈ 𝒫 (ω × 𝐴)) |
19 | 18 | abssi 4066 | . . 3 ⊢ {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛⟶𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘 ∈ 𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠‘𝑘)))} ⊆ 𝒫 (ω × 𝐴) |
20 | 5, 19 | eqsstri 4014 | . 2 ⊢ 𝑆 ⊆ 𝒫 (ω × 𝐴) |
21 | 4, 20 | ssexi 5327 | 1 ⊢ 𝑆 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 {cab 2703 ∀wral 3051 ∃wrex 3060 Vcvv 3462 ⊆ wss 3947 ∅c0 4325 𝒫 cpw 4607 × cxp 5680 Oncon0 6376 suc csuc 6378 ⟶wf 6550 ‘cfv 6554 ωcom 7876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-dc 10489 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-fv 6562 df-om 7877 df-1o 8496 |
This theorem is referenced by: axdc3lem2 10494 axdc3lem4 10496 |
Copyright terms: Public domain | W3C validator |