Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pcl0bN Structured version   Visualization version   GIF version

Theorem pcl0bN 37937
Description: The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pcl0b.a 𝐴 = (Atoms‘𝐾)
pcl0b.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pcl0bN ((𝐾 ∈ HL ∧ 𝑃𝐴) → ((𝑈𝑃) = ∅ ↔ 𝑃 = ∅))

Proof of Theorem pcl0bN
StepHypRef Expression
1 pcl0b.a . . . . 5 𝐴 = (Atoms‘𝐾)
2 pcl0b.c . . . . 5 𝑈 = (PCl‘𝐾)
31, 2pclssidN 37909 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴) → 𝑃 ⊆ (𝑈𝑃))
4 eqimss 3977 . . . 4 ((𝑈𝑃) = ∅ → (𝑈𝑃) ⊆ ∅)
53, 4sylan9ss 3934 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑈𝑃) = ∅) → 𝑃 ⊆ ∅)
6 ss0 4332 . . 3 (𝑃 ⊆ ∅ → 𝑃 = ∅)
75, 6syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑈𝑃) = ∅) → 𝑃 = ∅)
8 fveq2 6774 . . . 4 (𝑃 = ∅ → (𝑈𝑃) = (𝑈‘∅))
92pcl0N 37936 . . . 4 (𝐾 ∈ HL → (𝑈‘∅) = ∅)
108, 9sylan9eqr 2800 . . 3 ((𝐾 ∈ HL ∧ 𝑃 = ∅) → (𝑈𝑃) = ∅)
1110adantlr 712 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑃 = ∅) → (𝑈𝑃) = ∅)
127, 11impbida 798 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ((𝑈𝑃) = ∅ ↔ 𝑃 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wss 3887  c0 4256  cfv 6433  Atomscatm 37277  HLchlt 37364  PClcpclN 37901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-undef 8089  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-psubsp 37517  df-pmap 37518  df-pclN 37902  df-polarityN 37917
This theorem is referenced by:  pclfinclN  37964
  Copyright terms: Public domain W3C validator