| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pcl0bN | Structured version Visualization version GIF version | ||
| Description: The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pcl0b.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pcl0b.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pcl0bN | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → ((𝑈‘𝑃) = ∅ ↔ 𝑃 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcl0b.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | pcl0b.c | . . . . 5 ⊢ 𝑈 = (PCl‘𝐾) | |
| 3 | 1, 2 | pclssidN 39884 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → 𝑃 ⊆ (𝑈‘𝑃)) |
| 4 | eqimss 4007 | . . . 4 ⊢ ((𝑈‘𝑃) = ∅ → (𝑈‘𝑃) ⊆ ∅) | |
| 5 | 3, 4 | sylan9ss 3962 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ (𝑈‘𝑃) = ∅) → 𝑃 ⊆ ∅) |
| 6 | ss0 4367 | . . 3 ⊢ (𝑃 ⊆ ∅ → 𝑃 = ∅) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ (𝑈‘𝑃) = ∅) → 𝑃 = ∅) |
| 8 | fveq2 6860 | . . . 4 ⊢ (𝑃 = ∅ → (𝑈‘𝑃) = (𝑈‘∅)) | |
| 9 | 2 | pcl0N 39911 | . . . 4 ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) |
| 10 | 8, 9 | sylan9eqr 2787 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 = ∅) → (𝑈‘𝑃) = ∅) |
| 11 | 10 | adantlr 715 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ 𝑃 = ∅) → (𝑈‘𝑃) = ∅) |
| 12 | 7, 11 | impbida 800 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → ((𝑈‘𝑃) = ∅ ↔ 𝑃 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 ∅c0 4298 ‘cfv 6513 Atomscatm 39251 HLchlt 39338 PClcpclN 39876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-proset 18261 df-poset 18280 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-oposet 39164 df-ol 39166 df-oml 39167 df-covers 39254 df-ats 39255 df-atl 39286 df-cvlat 39310 df-hlat 39339 df-psubsp 39492 df-pmap 39493 df-pclN 39877 df-polarityN 39892 |
| This theorem is referenced by: pclfinclN 39939 |
| Copyright terms: Public domain | W3C validator |