![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pcl0bN | Structured version Visualization version GIF version |
Description: The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pcl0b.a | β’ π΄ = (AtomsβπΎ) |
pcl0b.c | β’ π = (PClβπΎ) |
Ref | Expression |
---|---|
pcl0bN | β’ ((πΎ β HL β§ π β π΄) β ((πβπ) = β β π = β )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcl0b.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
2 | pcl0b.c | . . . . 5 β’ π = (PClβπΎ) | |
3 | 1, 2 | pclssidN 38754 | . . . 4 β’ ((πΎ β HL β§ π β π΄) β π β (πβπ)) |
4 | eqimss 4039 | . . . 4 β’ ((πβπ) = β β (πβπ) β β ) | |
5 | 3, 4 | sylan9ss 3994 | . . 3 β’ (((πΎ β HL β§ π β π΄) β§ (πβπ) = β ) β π β β ) |
6 | ss0 4397 | . . 3 β’ (π β β β π = β ) | |
7 | 5, 6 | syl 17 | . 2 β’ (((πΎ β HL β§ π β π΄) β§ (πβπ) = β ) β π = β ) |
8 | fveq2 6888 | . . . 4 β’ (π = β β (πβπ) = (πββ )) | |
9 | 2 | pcl0N 38781 | . . . 4 β’ (πΎ β HL β (πββ ) = β ) |
10 | 8, 9 | sylan9eqr 2794 | . . 3 β’ ((πΎ β HL β§ π = β ) β (πβπ) = β ) |
11 | 10 | adantlr 713 | . 2 β’ (((πΎ β HL β§ π β π΄) β§ π = β ) β (πβπ) = β ) |
12 | 7, 11 | impbida 799 | 1 β’ ((πΎ β HL β§ π β π΄) β ((πβπ) = β β π = β )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wss 3947 β c0 4321 βcfv 6540 Atomscatm 38121 HLchlt 38208 PClcpclN 38746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-psubsp 38362 df-pmap 38363 df-pclN 38747 df-polarityN 38762 |
This theorem is referenced by: pclfinclN 38809 |
Copyright terms: Public domain | W3C validator |