Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pcl0bN Structured version   Visualization version   GIF version

Theorem pcl0bN 39880
Description: The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pcl0b.a 𝐴 = (Atoms‘𝐾)
pcl0b.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pcl0bN ((𝐾 ∈ HL ∧ 𝑃𝐴) → ((𝑈𝑃) = ∅ ↔ 𝑃 = ∅))

Proof of Theorem pcl0bN
StepHypRef Expression
1 pcl0b.a . . . . 5 𝐴 = (Atoms‘𝐾)
2 pcl0b.c . . . . 5 𝑈 = (PCl‘𝐾)
31, 2pclssidN 39852 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴) → 𝑃 ⊆ (𝑈𝑃))
4 eqimss 4067 . . . 4 ((𝑈𝑃) = ∅ → (𝑈𝑃) ⊆ ∅)
53, 4sylan9ss 4022 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑈𝑃) = ∅) → 𝑃 ⊆ ∅)
6 ss0 4425 . . 3 (𝑃 ⊆ ∅ → 𝑃 = ∅)
75, 6syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑈𝑃) = ∅) → 𝑃 = ∅)
8 fveq2 6920 . . . 4 (𝑃 = ∅ → (𝑈𝑃) = (𝑈‘∅))
92pcl0N 39879 . . . 4 (𝐾 ∈ HL → (𝑈‘∅) = ∅)
108, 9sylan9eqr 2802 . . 3 ((𝐾 ∈ HL ∧ 𝑃 = ∅) → (𝑈𝑃) = ∅)
1110adantlr 714 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑃 = ∅) → (𝑈𝑃) = ∅)
127, 11impbida 800 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ((𝑈𝑃) = ∅ ↔ 𝑃 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wss 3976  c0 4352  cfv 6573  Atomscatm 39219  HLchlt 39306  PClcpclN 39844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-psubsp 39460  df-pmap 39461  df-pclN 39845  df-polarityN 39860
This theorem is referenced by:  pclfinclN  39907
  Copyright terms: Public domain W3C validator