![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pcl0bN | Structured version Visualization version GIF version |
Description: The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pcl0b.a | β’ π΄ = (AtomsβπΎ) |
pcl0b.c | β’ π = (PClβπΎ) |
Ref | Expression |
---|---|
pcl0bN | β’ ((πΎ β HL β§ π β π΄) β ((πβπ) = β β π = β )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcl0b.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
2 | pcl0b.c | . . . . 5 β’ π = (PClβπΎ) | |
3 | 1, 2 | pclssidN 39277 | . . . 4 β’ ((πΎ β HL β§ π β π΄) β π β (πβπ)) |
4 | eqimss 4035 | . . . 4 β’ ((πβπ) = β β (πβπ) β β ) | |
5 | 3, 4 | sylan9ss 3990 | . . 3 β’ (((πΎ β HL β§ π β π΄) β§ (πβπ) = β ) β π β β ) |
6 | ss0 4393 | . . 3 β’ (π β β β π = β ) | |
7 | 5, 6 | syl 17 | . 2 β’ (((πΎ β HL β§ π β π΄) β§ (πβπ) = β ) β π = β ) |
8 | fveq2 6884 | . . . 4 β’ (π = β β (πβπ) = (πββ )) | |
9 | 2 | pcl0N 39304 | . . . 4 β’ (πΎ β HL β (πββ ) = β ) |
10 | 8, 9 | sylan9eqr 2788 | . . 3 β’ ((πΎ β HL β§ π = β ) β (πβπ) = β ) |
11 | 10 | adantlr 712 | . 2 β’ (((πΎ β HL β§ π β π΄) β§ π = β ) β (πβπ) = β ) |
12 | 7, 11 | impbida 798 | 1 β’ ((πΎ β HL β§ π β π΄) β ((πβπ) = β β π = β )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 β wss 3943 β c0 4317 βcfv 6536 Atomscatm 38644 HLchlt 38731 PClcpclN 39269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-p1 18389 df-lat 18395 df-clat 18462 df-oposet 38557 df-ol 38559 df-oml 38560 df-covers 38647 df-ats 38648 df-atl 38679 df-cvlat 38703 df-hlat 38732 df-psubsp 38885 df-pmap 38886 df-pclN 39270 df-polarityN 39285 |
This theorem is referenced by: pclfinclN 39332 |
Copyright terms: Public domain | W3C validator |