Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pcl0bN | Structured version Visualization version GIF version |
Description: The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pcl0b.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pcl0b.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pcl0bN | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → ((𝑈‘𝑃) = ∅ ↔ 𝑃 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcl0b.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | pcl0b.c | . . . . 5 ⊢ 𝑈 = (PCl‘𝐾) | |
3 | 1, 2 | pclssidN 37909 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → 𝑃 ⊆ (𝑈‘𝑃)) |
4 | eqimss 3977 | . . . 4 ⊢ ((𝑈‘𝑃) = ∅ → (𝑈‘𝑃) ⊆ ∅) | |
5 | 3, 4 | sylan9ss 3934 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ (𝑈‘𝑃) = ∅) → 𝑃 ⊆ ∅) |
6 | ss0 4332 | . . 3 ⊢ (𝑃 ⊆ ∅ → 𝑃 = ∅) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ (𝑈‘𝑃) = ∅) → 𝑃 = ∅) |
8 | fveq2 6774 | . . . 4 ⊢ (𝑃 = ∅ → (𝑈‘𝑃) = (𝑈‘∅)) | |
9 | 2 | pcl0N 37936 | . . . 4 ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) |
10 | 8, 9 | sylan9eqr 2800 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 = ∅) → (𝑈‘𝑃) = ∅) |
11 | 10 | adantlr 712 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ 𝑃 = ∅) → (𝑈‘𝑃) = ∅) |
12 | 7, 11 | impbida 798 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → ((𝑈‘𝑃) = ∅ ↔ 𝑃 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∅c0 4256 ‘cfv 6433 Atomscatm 37277 HLchlt 37364 PClcpclN 37901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-undef 8089 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-psubsp 37517 df-pmap 37518 df-pclN 37902 df-polarityN 37917 |
This theorem is referenced by: pclfinclN 37964 |
Copyright terms: Public domain | W3C validator |