Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pcl0bN Structured version   Visualization version   GIF version

Theorem pcl0bN 39866
Description: The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pcl0b.a 𝐴 = (Atoms‘𝐾)
pcl0b.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pcl0bN ((𝐾 ∈ HL ∧ 𝑃𝐴) → ((𝑈𝑃) = ∅ ↔ 𝑃 = ∅))

Proof of Theorem pcl0bN
StepHypRef Expression
1 pcl0b.a . . . . 5 𝐴 = (Atoms‘𝐾)
2 pcl0b.c . . . . 5 𝑈 = (PCl‘𝐾)
31, 2pclssidN 39838 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴) → 𝑃 ⊆ (𝑈𝑃))
4 eqimss 4024 . . . 4 ((𝑈𝑃) = ∅ → (𝑈𝑃) ⊆ ∅)
53, 4sylan9ss 3979 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑈𝑃) = ∅) → 𝑃 ⊆ ∅)
6 ss0 4384 . . 3 (𝑃 ⊆ ∅ → 𝑃 = ∅)
75, 6syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑈𝑃) = ∅) → 𝑃 = ∅)
8 fveq2 6887 . . . 4 (𝑃 = ∅ → (𝑈𝑃) = (𝑈‘∅))
92pcl0N 39865 . . . 4 (𝐾 ∈ HL → (𝑈‘∅) = ∅)
108, 9sylan9eqr 2791 . . 3 ((𝐾 ∈ HL ∧ 𝑃 = ∅) → (𝑈𝑃) = ∅)
1110adantlr 715 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑃 = ∅) → (𝑈𝑃) = ∅)
127, 11impbida 800 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ((𝑈𝑃) = ∅ ↔ 𝑃 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wss 3933  c0 4315  cfv 6542  Atomscatm 39205  HLchlt 39292  PClcpclN 39830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-proset 18315  df-poset 18334  df-plt 18349  df-lub 18365  df-glb 18366  df-join 18367  df-meet 18368  df-p0 18444  df-p1 18445  df-lat 18451  df-clat 18518  df-oposet 39118  df-ol 39120  df-oml 39121  df-covers 39208  df-ats 39209  df-atl 39240  df-cvlat 39264  df-hlat 39293  df-psubsp 39446  df-pmap 39447  df-pclN 39831  df-polarityN 39846
This theorem is referenced by:  pclfinclN  39893
  Copyright terms: Public domain W3C validator