| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pcl0bN | Structured version Visualization version GIF version | ||
| Description: The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pcl0b.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pcl0b.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pcl0bN | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → ((𝑈‘𝑃) = ∅ ↔ 𝑃 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcl0b.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | pcl0b.c | . . . . 5 ⊢ 𝑈 = (PCl‘𝐾) | |
| 3 | 1, 2 | pclssidN 39889 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → 𝑃 ⊆ (𝑈‘𝑃)) |
| 4 | eqimss 4005 | . . . 4 ⊢ ((𝑈‘𝑃) = ∅ → (𝑈‘𝑃) ⊆ ∅) | |
| 5 | 3, 4 | sylan9ss 3960 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ (𝑈‘𝑃) = ∅) → 𝑃 ⊆ ∅) |
| 6 | ss0 4365 | . . 3 ⊢ (𝑃 ⊆ ∅ → 𝑃 = ∅) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ (𝑈‘𝑃) = ∅) → 𝑃 = ∅) |
| 8 | fveq2 6858 | . . . 4 ⊢ (𝑃 = ∅ → (𝑈‘𝑃) = (𝑈‘∅)) | |
| 9 | 2 | pcl0N 39916 | . . . 4 ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) |
| 10 | 8, 9 | sylan9eqr 2786 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 = ∅) → (𝑈‘𝑃) = ∅) |
| 11 | 10 | adantlr 715 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ 𝑃 = ∅) → (𝑈‘𝑃) = ∅) |
| 12 | 7, 11 | impbida 800 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → ((𝑈‘𝑃) = ∅ ↔ 𝑃 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∅c0 4296 ‘cfv 6511 Atomscatm 39256 HLchlt 39343 PClcpclN 39881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-psubsp 39497 df-pmap 39498 df-pclN 39882 df-polarityN 39897 |
| This theorem is referenced by: pclfinclN 39944 |
| Copyright terms: Public domain | W3C validator |