Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pcl0bN | Structured version Visualization version GIF version |
Description: The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pcl0b.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pcl0b.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pcl0bN | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → ((𝑈‘𝑃) = ∅ ↔ 𝑃 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcl0b.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | pcl0b.c | . . . . 5 ⊢ 𝑈 = (PCl‘𝐾) | |
3 | 1, 2 | pclssidN 37836 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → 𝑃 ⊆ (𝑈‘𝑃)) |
4 | eqimss 3973 | . . . 4 ⊢ ((𝑈‘𝑃) = ∅ → (𝑈‘𝑃) ⊆ ∅) | |
5 | 3, 4 | sylan9ss 3930 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ (𝑈‘𝑃) = ∅) → 𝑃 ⊆ ∅) |
6 | ss0 4329 | . . 3 ⊢ (𝑃 ⊆ ∅ → 𝑃 = ∅) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ (𝑈‘𝑃) = ∅) → 𝑃 = ∅) |
8 | fveq2 6756 | . . . 4 ⊢ (𝑃 = ∅ → (𝑈‘𝑃) = (𝑈‘∅)) | |
9 | 2 | pcl0N 37863 | . . . 4 ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) |
10 | 8, 9 | sylan9eqr 2801 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 = ∅) → (𝑈‘𝑃) = ∅) |
11 | 10 | adantlr 711 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) ∧ 𝑃 = ∅) → (𝑈‘𝑃) = ∅) |
12 | 7, 11 | impbida 797 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → ((𝑈‘𝑃) = ∅ ↔ 𝑃 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ∅c0 4253 ‘cfv 6418 Atomscatm 37204 HLchlt 37291 PClcpclN 37828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-undef 8060 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-psubsp 37444 df-pmap 37445 df-pclN 37829 df-polarityN 37844 |
This theorem is referenced by: pclfinclN 37891 |
Copyright terms: Public domain | W3C validator |