HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shslubi Structured version   Visualization version   GIF version

Theorem shslubi 31404
Description: The least upper bound law for Hilbert subspace sum. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shslub.1 𝐴S
shslub.2 𝐵S
shslub.3 𝐶S
Assertion
Ref Expression
shslubi ((𝐴𝐶𝐵𝐶) ↔ (𝐴 + 𝐵) ⊆ 𝐶)

Proof of Theorem shslubi
StepHypRef Expression
1 shslub.1 . . . . 5 𝐴S
2 shslub.3 . . . . 5 𝐶S
3 shslub.2 . . . . 5 𝐵S
41, 2, 3shlessi 31396 . . . 4 (𝐴𝐶 → (𝐴 + 𝐵) ⊆ (𝐶 + 𝐵))
52, 3shscomi 31382 . . . 4 (𝐶 + 𝐵) = (𝐵 + 𝐶)
64, 5sseqtrdi 4024 . . 3 (𝐴𝐶 → (𝐴 + 𝐵) ⊆ (𝐵 + 𝐶))
73, 2, 2shlessi 31396 . . . 4 (𝐵𝐶 → (𝐵 + 𝐶) ⊆ (𝐶 + 𝐶))
82shsidmi 31403 . . . 4 (𝐶 + 𝐶) = 𝐶
97, 8sseqtrdi 4024 . . 3 (𝐵𝐶 → (𝐵 + 𝐶) ⊆ 𝐶)
106, 9sylan9ss 3997 . 2 ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) ⊆ 𝐶)
111, 3shsub1i 31391 . . . 4 𝐴 ⊆ (𝐴 + 𝐵)
12 sstr 3992 . . . 4 ((𝐴 ⊆ (𝐴 + 𝐵) ∧ (𝐴 + 𝐵) ⊆ 𝐶) → 𝐴𝐶)
1311, 12mpan 690 . . 3 ((𝐴 + 𝐵) ⊆ 𝐶𝐴𝐶)
143, 1shsub2i 31392 . . . 4 𝐵 ⊆ (𝐴 + 𝐵)
15 sstr 3992 . . . 4 ((𝐵 ⊆ (𝐴 + 𝐵) ∧ (𝐴 + 𝐵) ⊆ 𝐶) → 𝐵𝐶)
1614, 15mpan 690 . . 3 ((𝐴 + 𝐵) ⊆ 𝐶𝐵𝐶)
1713, 16jca 511 . 2 ((𝐴 + 𝐵) ⊆ 𝐶 → (𝐴𝐶𝐵𝐶))
1810, 17impbii 209 1 ((𝐴𝐶𝐵𝐶) ↔ (𝐴 + 𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  wss 3951  (class class class)co 7431   S csh 30947   + cph 30950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvdistr2 31028  ax-hvmul0 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-neg 11495  df-grpo 30512  df-ablo 30564  df-hvsub 30990  df-sh 31226  df-shs 31327
This theorem is referenced by:  shlesb1i  31405  shsval2i  31406
  Copyright terms: Public domain W3C validator