| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shslubi | Structured version Visualization version GIF version | ||
| Description: The least upper bound law for Hilbert subspace sum. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shslub.1 | ⊢ 𝐴 ∈ Sℋ |
| shslub.2 | ⊢ 𝐵 ∈ Sℋ |
| shslub.3 | ⊢ 𝐶 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shslubi | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 +ℋ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shslub.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
| 2 | shslub.3 | . . . . 5 ⊢ 𝐶 ∈ Sℋ | |
| 3 | shslub.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
| 4 | 1, 2, 3 | shlessi 31356 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 +ℋ 𝐵) ⊆ (𝐶 +ℋ 𝐵)) |
| 5 | 2, 3 | shscomi 31342 | . . . 4 ⊢ (𝐶 +ℋ 𝐵) = (𝐵 +ℋ 𝐶) |
| 6 | 4, 5 | sseqtrdi 3984 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 +ℋ 𝐵) ⊆ (𝐵 +ℋ 𝐶)) |
| 7 | 3, 2, 2 | shlessi 31356 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 +ℋ 𝐶) ⊆ (𝐶 +ℋ 𝐶)) |
| 8 | 2 | shsidmi 31363 | . . . 4 ⊢ (𝐶 +ℋ 𝐶) = 𝐶 |
| 9 | 7, 8 | sseqtrdi 3984 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 +ℋ 𝐶) ⊆ 𝐶) |
| 10 | 6, 9 | sylan9ss 3957 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 +ℋ 𝐵) ⊆ 𝐶) |
| 11 | 1, 3 | shsub1i 31351 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐵) |
| 12 | sstr 3952 | . . . 4 ⊢ ((𝐴 ⊆ (𝐴 +ℋ 𝐵) ∧ (𝐴 +ℋ 𝐵) ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | |
| 13 | 11, 12 | mpan 690 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) ⊆ 𝐶 → 𝐴 ⊆ 𝐶) |
| 14 | 3, 1 | shsub2i 31352 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 +ℋ 𝐵) |
| 15 | sstr 3952 | . . . 4 ⊢ ((𝐵 ⊆ (𝐴 +ℋ 𝐵) ∧ (𝐴 +ℋ 𝐵) ⊆ 𝐶) → 𝐵 ⊆ 𝐶) | |
| 16 | 14, 15 | mpan 690 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) ⊆ 𝐶 → 𝐵 ⊆ 𝐶) |
| 17 | 13, 16 | jca 511 | . 2 ⊢ ((𝐴 +ℋ 𝐵) ⊆ 𝐶 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 18 | 10, 17 | impbii 209 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 +ℋ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3911 (class class class)co 7369 Sℋ csh 30907 +ℋ cph 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-hilex 30978 ax-hfvadd 30979 ax-hvcom 30980 ax-hvass 30981 ax-hv0cl 30982 ax-hvaddid 30983 ax-hfvmul 30984 ax-hvmulid 30985 ax-hvdistr2 30988 ax-hvmul0 30989 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 df-grpo 30472 df-ablo 30524 df-hvsub 30950 df-sh 31186 df-shs 31287 |
| This theorem is referenced by: shlesb1i 31365 shsval2i 31366 |
| Copyright terms: Public domain | W3C validator |