HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shslubi Structured version   Visualization version   GIF version

Theorem shslubi 30638
Description: The least upper bound law for Hilbert subspace sum. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shslub.1 𝐴S
shslub.2 𝐵S
shslub.3 𝐶S
Assertion
Ref Expression
shslubi ((𝐴𝐶𝐵𝐶) ↔ (𝐴 + 𝐵) ⊆ 𝐶)

Proof of Theorem shslubi
StepHypRef Expression
1 shslub.1 . . . . 5 𝐴S
2 shslub.3 . . . . 5 𝐶S
3 shslub.2 . . . . 5 𝐵S
41, 2, 3shlessi 30630 . . . 4 (𝐴𝐶 → (𝐴 + 𝐵) ⊆ (𝐶 + 𝐵))
52, 3shscomi 30616 . . . 4 (𝐶 + 𝐵) = (𝐵 + 𝐶)
64, 5sseqtrdi 4033 . . 3 (𝐴𝐶 → (𝐴 + 𝐵) ⊆ (𝐵 + 𝐶))
73, 2, 2shlessi 30630 . . . 4 (𝐵𝐶 → (𝐵 + 𝐶) ⊆ (𝐶 + 𝐶))
82shsidmi 30637 . . . 4 (𝐶 + 𝐶) = 𝐶
97, 8sseqtrdi 4033 . . 3 (𝐵𝐶 → (𝐵 + 𝐶) ⊆ 𝐶)
106, 9sylan9ss 3996 . 2 ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) ⊆ 𝐶)
111, 3shsub1i 30625 . . . 4 𝐴 ⊆ (𝐴 + 𝐵)
12 sstr 3991 . . . 4 ((𝐴 ⊆ (𝐴 + 𝐵) ∧ (𝐴 + 𝐵) ⊆ 𝐶) → 𝐴𝐶)
1311, 12mpan 689 . . 3 ((𝐴 + 𝐵) ⊆ 𝐶𝐴𝐶)
143, 1shsub2i 30626 . . . 4 𝐵 ⊆ (𝐴 + 𝐵)
15 sstr 3991 . . . 4 ((𝐵 ⊆ (𝐴 + 𝐵) ∧ (𝐴 + 𝐵) ⊆ 𝐶) → 𝐵𝐶)
1614, 15mpan 689 . . 3 ((𝐴 + 𝐵) ⊆ 𝐶𝐵𝐶)
1713, 16jca 513 . 2 ((𝐴 + 𝐵) ⊆ 𝐶 → (𝐴𝐶𝐵𝐶))
1810, 17impbii 208 1 ((𝐴𝐶𝐵𝐶) ↔ (𝐴 + 𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wcel 2107  wss 3949  (class class class)co 7409   S csh 30181   + cph 30184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-hilex 30252  ax-hfvadd 30253  ax-hvcom 30254  ax-hvass 30255  ax-hv0cl 30256  ax-hvaddid 30257  ax-hfvmul 30258  ax-hvmulid 30259  ax-hvdistr2 30262  ax-hvmul0 30263
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-ltxr 11253  df-sub 11446  df-neg 11447  df-grpo 29746  df-ablo 29798  df-hvsub 30224  df-sh 30460  df-shs 30561
This theorem is referenced by:  shlesb1i  30639  shsval2i  30640
  Copyright terms: Public domain W3C validator