| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shslubi | Structured version Visualization version GIF version | ||
| Description: The least upper bound law for Hilbert subspace sum. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shslub.1 | ⊢ 𝐴 ∈ Sℋ |
| shslub.2 | ⊢ 𝐵 ∈ Sℋ |
| shslub.3 | ⊢ 𝐶 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shslubi | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 +ℋ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shslub.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
| 2 | shslub.3 | . . . . 5 ⊢ 𝐶 ∈ Sℋ | |
| 3 | shslub.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
| 4 | 1, 2, 3 | shlessi 31357 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 +ℋ 𝐵) ⊆ (𝐶 +ℋ 𝐵)) |
| 5 | 2, 3 | shscomi 31343 | . . . 4 ⊢ (𝐶 +ℋ 𝐵) = (𝐵 +ℋ 𝐶) |
| 6 | 4, 5 | sseqtrdi 3970 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 +ℋ 𝐵) ⊆ (𝐵 +ℋ 𝐶)) |
| 7 | 3, 2, 2 | shlessi 31357 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 +ℋ 𝐶) ⊆ (𝐶 +ℋ 𝐶)) |
| 8 | 2 | shsidmi 31364 | . . . 4 ⊢ (𝐶 +ℋ 𝐶) = 𝐶 |
| 9 | 7, 8 | sseqtrdi 3970 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 +ℋ 𝐶) ⊆ 𝐶) |
| 10 | 6, 9 | sylan9ss 3943 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 +ℋ 𝐵) ⊆ 𝐶) |
| 11 | 1, 3 | shsub1i 31352 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐵) |
| 12 | sstr 3938 | . . . 4 ⊢ ((𝐴 ⊆ (𝐴 +ℋ 𝐵) ∧ (𝐴 +ℋ 𝐵) ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | |
| 13 | 11, 12 | mpan 690 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) ⊆ 𝐶 → 𝐴 ⊆ 𝐶) |
| 14 | 3, 1 | shsub2i 31353 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 +ℋ 𝐵) |
| 15 | sstr 3938 | . . . 4 ⊢ ((𝐵 ⊆ (𝐴 +ℋ 𝐵) ∧ (𝐴 +ℋ 𝐵) ⊆ 𝐶) → 𝐵 ⊆ 𝐶) | |
| 16 | 14, 15 | mpan 690 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) ⊆ 𝐶 → 𝐵 ⊆ 𝐶) |
| 17 | 13, 16 | jca 511 | . 2 ⊢ ((𝐴 +ℋ 𝐵) ⊆ 𝐶 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 18 | 10, 17 | impbii 209 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 +ℋ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 (class class class)co 7346 Sℋ csh 30908 +ℋ cph 30911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvdistr2 30989 ax-hvmul0 30990 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-neg 11347 df-grpo 30473 df-ablo 30525 df-hvsub 30951 df-sh 31187 df-shs 31288 |
| This theorem is referenced by: shlesb1i 31366 shsval2i 31367 |
| Copyright terms: Public domain | W3C validator |