![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shslubi | Structured version Visualization version GIF version |
Description: The least upper bound law for Hilbert subspace sum. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shslub.1 | ⊢ 𝐴 ∈ Sℋ |
shslub.2 | ⊢ 𝐵 ∈ Sℋ |
shslub.3 | ⊢ 𝐶 ∈ Sℋ |
Ref | Expression |
---|---|
shslubi | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 +ℋ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shslub.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
2 | shslub.3 | . . . . 5 ⊢ 𝐶 ∈ Sℋ | |
3 | shslub.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
4 | 1, 2, 3 | shlessi 28938 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 +ℋ 𝐵) ⊆ (𝐶 +ℋ 𝐵)) |
5 | 2, 3 | shscomi 28924 | . . . 4 ⊢ (𝐶 +ℋ 𝐵) = (𝐵 +ℋ 𝐶) |
6 | 4, 5 | syl6sseq 3909 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 +ℋ 𝐵) ⊆ (𝐵 +ℋ 𝐶)) |
7 | 3, 2, 2 | shlessi 28938 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 +ℋ 𝐶) ⊆ (𝐶 +ℋ 𝐶)) |
8 | 2 | shsidmi 28945 | . . . 4 ⊢ (𝐶 +ℋ 𝐶) = 𝐶 |
9 | 7, 8 | syl6sseq 3909 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 +ℋ 𝐶) ⊆ 𝐶) |
10 | 6, 9 | sylan9ss 3873 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 +ℋ 𝐵) ⊆ 𝐶) |
11 | 1, 3 | shsub1i 28933 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐵) |
12 | sstr 3868 | . . . 4 ⊢ ((𝐴 ⊆ (𝐴 +ℋ 𝐵) ∧ (𝐴 +ℋ 𝐵) ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | |
13 | 11, 12 | mpan 677 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) ⊆ 𝐶 → 𝐴 ⊆ 𝐶) |
14 | 3, 1 | shsub2i 28934 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 +ℋ 𝐵) |
15 | sstr 3868 | . . . 4 ⊢ ((𝐵 ⊆ (𝐴 +ℋ 𝐵) ∧ (𝐴 +ℋ 𝐵) ⊆ 𝐶) → 𝐵 ⊆ 𝐶) | |
16 | 14, 15 | mpan 677 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) ⊆ 𝐶 → 𝐵 ⊆ 𝐶) |
17 | 13, 16 | jca 504 | . 2 ⊢ ((𝐴 +ℋ 𝐵) ⊆ 𝐶 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
18 | 10, 17 | impbii 201 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 +ℋ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 ∈ wcel 2050 ⊆ wss 3831 (class class class)co 6978 Sℋ csh 28487 +ℋ cph 28490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-hilex 28558 ax-hfvadd 28559 ax-hvcom 28560 ax-hvass 28561 ax-hv0cl 28562 ax-hvaddid 28563 ax-hfvmul 28564 ax-hvmulid 28565 ax-hvdistr2 28568 ax-hvmul0 28569 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-id 5313 df-po 5327 df-so 5328 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-pnf 10478 df-mnf 10479 df-ltxr 10481 df-sub 10674 df-neg 10675 df-grpo 28050 df-ablo 28102 df-hvsub 28530 df-sh 28766 df-shs 28869 |
This theorem is referenced by: shlesb1i 28947 shsval2i 28948 |
Copyright terms: Public domain | W3C validator |