![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shslubi | Structured version Visualization version GIF version |
Description: The least upper bound law for Hilbert subspace sum. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shslub.1 | ⊢ 𝐴 ∈ Sℋ |
shslub.2 | ⊢ 𝐵 ∈ Sℋ |
shslub.3 | ⊢ 𝐶 ∈ Sℋ |
Ref | Expression |
---|---|
shslubi | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 +ℋ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shslub.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
2 | shslub.3 | . . . . 5 ⊢ 𝐶 ∈ Sℋ | |
3 | shslub.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
4 | 1, 2, 3 | shlessi 30630 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 +ℋ 𝐵) ⊆ (𝐶 +ℋ 𝐵)) |
5 | 2, 3 | shscomi 30616 | . . . 4 ⊢ (𝐶 +ℋ 𝐵) = (𝐵 +ℋ 𝐶) |
6 | 4, 5 | sseqtrdi 4033 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 +ℋ 𝐵) ⊆ (𝐵 +ℋ 𝐶)) |
7 | 3, 2, 2 | shlessi 30630 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 +ℋ 𝐶) ⊆ (𝐶 +ℋ 𝐶)) |
8 | 2 | shsidmi 30637 | . . . 4 ⊢ (𝐶 +ℋ 𝐶) = 𝐶 |
9 | 7, 8 | sseqtrdi 4033 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 +ℋ 𝐶) ⊆ 𝐶) |
10 | 6, 9 | sylan9ss 3996 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 +ℋ 𝐵) ⊆ 𝐶) |
11 | 1, 3 | shsub1i 30625 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐵) |
12 | sstr 3991 | . . . 4 ⊢ ((𝐴 ⊆ (𝐴 +ℋ 𝐵) ∧ (𝐴 +ℋ 𝐵) ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | |
13 | 11, 12 | mpan 689 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) ⊆ 𝐶 → 𝐴 ⊆ 𝐶) |
14 | 3, 1 | shsub2i 30626 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 +ℋ 𝐵) |
15 | sstr 3991 | . . . 4 ⊢ ((𝐵 ⊆ (𝐴 +ℋ 𝐵) ∧ (𝐴 +ℋ 𝐵) ⊆ 𝐶) → 𝐵 ⊆ 𝐶) | |
16 | 14, 15 | mpan 689 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) ⊆ 𝐶 → 𝐵 ⊆ 𝐶) |
17 | 13, 16 | jca 513 | . 2 ⊢ ((𝐴 +ℋ 𝐵) ⊆ 𝐶 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
18 | 10, 17 | impbii 208 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 +ℋ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ⊆ wss 3949 (class class class)co 7409 Sℋ csh 30181 +ℋ cph 30184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-hilex 30252 ax-hfvadd 30253 ax-hvcom 30254 ax-hvass 30255 ax-hv0cl 30256 ax-hvaddid 30257 ax-hfvmul 30258 ax-hvmulid 30259 ax-hvdistr2 30262 ax-hvmul0 30263 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 df-neg 11447 df-grpo 29746 df-ablo 29798 df-hvsub 30224 df-sh 30460 df-shs 30561 |
This theorem is referenced by: shlesb1i 30639 shsval2i 30640 |
Copyright terms: Public domain | W3C validator |