Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relrelss | Structured version Visualization version GIF version |
Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.) |
Ref | Expression |
---|---|
relrelss | ⊢ ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5587 | . . 3 ⊢ (Rel dom 𝐴 ↔ dom 𝐴 ⊆ (V × V)) | |
2 | 1 | anbi2i 622 | . 2 ⊢ ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ (Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V))) |
3 | relssdmrn 6161 | . . . 4 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) | |
4 | ssv 3941 | . . . . 5 ⊢ ran 𝐴 ⊆ V | |
5 | xpss12 5595 | . . . . 5 ⊢ ((dom 𝐴 ⊆ (V × V) ∧ ran 𝐴 ⊆ V) → (dom 𝐴 × ran 𝐴) ⊆ ((V × V) × V)) | |
6 | 4, 5 | mpan2 687 | . . . 4 ⊢ (dom 𝐴 ⊆ (V × V) → (dom 𝐴 × ran 𝐴) ⊆ ((V × V) × V)) |
7 | 3, 6 | sylan9ss 3930 | . . 3 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)) → 𝐴 ⊆ ((V × V) × V)) |
8 | xpss 5596 | . . . . . 6 ⊢ ((V × V) × V) ⊆ (V × V) | |
9 | sstr 3925 | . . . . . 6 ⊢ ((𝐴 ⊆ ((V × V) × V) ∧ ((V × V) × V) ⊆ (V × V)) → 𝐴 ⊆ (V × V)) | |
10 | 8, 9 | mpan2 687 | . . . . 5 ⊢ (𝐴 ⊆ ((V × V) × V) → 𝐴 ⊆ (V × V)) |
11 | df-rel 5587 | . . . . 5 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
12 | 10, 11 | sylibr 233 | . . . 4 ⊢ (𝐴 ⊆ ((V × V) × V) → Rel 𝐴) |
13 | dmss 5800 | . . . . 5 ⊢ (𝐴 ⊆ ((V × V) × V) → dom 𝐴 ⊆ dom ((V × V) × V)) | |
14 | vn0 4269 | . . . . . 6 ⊢ V ≠ ∅ | |
15 | dmxp 5827 | . . . . . 6 ⊢ (V ≠ ∅ → dom ((V × V) × V) = (V × V)) | |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ dom ((V × V) × V) = (V × V) |
17 | 13, 16 | sseqtrdi 3967 | . . . 4 ⊢ (𝐴 ⊆ ((V × V) × V) → dom 𝐴 ⊆ (V × V)) |
18 | 12, 17 | jca 511 | . . 3 ⊢ (𝐴 ⊆ ((V × V) × V) → (Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V))) |
19 | 7, 18 | impbii 208 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)) ↔ 𝐴 ⊆ ((V × V) × V)) |
20 | 2, 19 | bitri 274 | 1 ⊢ ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ≠ wne 2942 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 × cxp 5578 dom cdm 5580 ran crn 5581 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: dftpos3 8031 tpostpos2 8034 |
Copyright terms: Public domain | W3C validator |