MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relrelss Structured version   Visualization version   GIF version

Theorem relrelss 6272
Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
relrelss ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V))

Proof of Theorem relrelss
StepHypRef Expression
1 df-rel 5683 . . 3 (Rel dom 𝐴 ↔ dom 𝐴 ⊆ (V × V))
21anbi2i 623 . 2 ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ (Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)))
3 relssdmrn 6267 . . . 4 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
4 ssv 4006 . . . . 5 ran 𝐴 ⊆ V
5 xpss12 5691 . . . . 5 ((dom 𝐴 ⊆ (V × V) ∧ ran 𝐴 ⊆ V) → (dom 𝐴 × ran 𝐴) ⊆ ((V × V) × V))
64, 5mpan2 689 . . . 4 (dom 𝐴 ⊆ (V × V) → (dom 𝐴 × ran 𝐴) ⊆ ((V × V) × V))
73, 6sylan9ss 3995 . . 3 ((Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)) → 𝐴 ⊆ ((V × V) × V))
8 xpss 5692 . . . . . 6 ((V × V) × V) ⊆ (V × V)
9 sstr 3990 . . . . . 6 ((𝐴 ⊆ ((V × V) × V) ∧ ((V × V) × V) ⊆ (V × V)) → 𝐴 ⊆ (V × V))
108, 9mpan2 689 . . . . 5 (𝐴 ⊆ ((V × V) × V) → 𝐴 ⊆ (V × V))
11 df-rel 5683 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
1210, 11sylibr 233 . . . 4 (𝐴 ⊆ ((V × V) × V) → Rel 𝐴)
13 dmss 5902 . . . . 5 (𝐴 ⊆ ((V × V) × V) → dom 𝐴 ⊆ dom ((V × V) × V))
14 vn0 4338 . . . . . 6 V ≠ ∅
15 dmxp 5928 . . . . . 6 (V ≠ ∅ → dom ((V × V) × V) = (V × V))
1614, 15ax-mp 5 . . . . 5 dom ((V × V) × V) = (V × V)
1713, 16sseqtrdi 4032 . . . 4 (𝐴 ⊆ ((V × V) × V) → dom 𝐴 ⊆ (V × V))
1812, 17jca 512 . . 3 (𝐴 ⊆ ((V × V) × V) → (Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)))
197, 18impbii 208 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)) ↔ 𝐴 ⊆ ((V × V) × V))
202, 19bitri 274 1 ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wne 2940  Vcvv 3474  wss 3948  c0 4322   × cxp 5674  dom cdm 5676  ran crn 5677  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687
This theorem is referenced by:  dftpos3  8228  tpostpos2  8231
  Copyright terms: Public domain W3C validator