| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unss12 | Structured version Visualization version GIF version | ||
| Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
| Ref | Expression |
|---|---|
| unss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss1 4148 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
| 2 | unss2 4150 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | |
| 3 | 1, 2 | sylan9ss 3960 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3912 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 |
| This theorem is referenced by: pwssun 5530 fun 6722 f1un 6820 finsschain 9310 trclun 14980 relexpfld 15015 mulgfval 19001 mvdco 19375 dprd2da 19974 dmdprdsplit2lem 19977 lspun 20893 mulsproplem13 28031 mulsproplem14 28032 spanuni 31473 sshhococi 31475 mthmpps 35569 pibt2 37405 mblfinlem3 37653 dochdmj1 41384 mptrcllem 43602 clcnvlem 43612 dfrcl2 43663 relexpss1d 43694 corclrcl 43696 relexp0a 43705 corcltrcl 43728 frege131d 43753 |
| Copyright terms: Public domain | W3C validator |