| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unss12 | Structured version Visualization version GIF version | ||
| Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
| Ref | Expression |
|---|---|
| unss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss1 4135 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
| 2 | unss2 4137 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | |
| 3 | 1, 2 | sylan9ss 3948 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3900 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 |
| This theorem is referenced by: pwssun 5508 fun 6685 f1un 6783 finsschain 9243 trclun 14921 relexpfld 14956 mulgfval 18982 mvdco 19358 dprd2da 19957 dmdprdsplit2lem 19960 lspun 20921 mulsproplem13 28068 mulsproplem14 28069 spanuni 31522 sshhococi 31524 mthmpps 35624 pibt2 37457 mblfinlem3 37705 dochdmj1 41435 mptrcllem 43652 clcnvlem 43662 dfrcl2 43713 relexpss1d 43744 corclrcl 43746 relexp0a 43755 corcltrcl 43778 frege131d 43803 |
| Copyright terms: Public domain | W3C validator |