Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unss12 | Structured version Visualization version GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
Ref | Expression |
---|---|
unss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss1 4113 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
2 | unss2 4115 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | |
3 | 1, 2 | sylan9ss 3934 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∪ cun 3885 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 |
This theorem is referenced by: pwssun 5485 fun 6636 f1un 6736 undomOLD 8847 finsschain 9126 trclun 14725 relexpfld 14760 mulgfval 18702 mvdco 19053 dprd2da 19645 dmdprdsplit2lem 19648 lspun 20249 spanuni 29906 sshhococi 29908 mthmpps 33544 pibt2 35588 mblfinlem3 35816 dochdmj1 39404 mptrcllem 41221 clcnvlem 41231 dfrcl2 41282 relexpss1d 41313 corclrcl 41315 relexp0a 41324 corcltrcl 41347 frege131d 41372 |
Copyright terms: Public domain | W3C validator |