MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss12 Structured version   Visualization version   GIF version

Theorem unss12 4137
Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.)
Assertion
Ref Expression
unss12 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))

Proof of Theorem unss12
StepHypRef Expression
1 unss1 4134 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 unss2 4136 . 2 (𝐶𝐷 → (𝐵𝐶) ⊆ (𝐵𝐷))
31, 2sylan9ss 3944 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cun 3896  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-un 3903  df-ss 3915
This theorem is referenced by:  pwssun  5513  fun  6692  f1un  6790  finsschain  9252  trclun  14925  relexpfld  14960  mulgfval  18986  mvdco  19361  dprd2da  19960  dmdprdsplit2lem  19963  lspun  20924  mulsproplem13  28070  mulsproplem14  28071  spanuni  31528  sshhococi  31530  mthmpps  35649  pibt2  37484  mblfinlem3  37722  dochdmj1  41512  mptrcllem  43733  clcnvlem  43743  dfrcl2  43794  relexpss1d  43825  corclrcl  43827  relexp0a  43836  corcltrcl  43859  frege131d  43884
  Copyright terms: Public domain W3C validator