Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unss12 | Structured version Visualization version GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
Ref | Expression |
---|---|
unss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss1 4109 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
2 | unss2 4111 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | |
3 | 1, 2 | sylan9ss 3930 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3881 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 |
This theorem is referenced by: pwssun 5476 fun 6620 undom 8800 finsschain 9056 trclun 14653 relexpfld 14688 mulgfval 18617 mvdco 18968 dprd2da 19560 dmdprdsplit2lem 19563 lspun 20164 spanuni 29807 sshhococi 29809 mthmpps 33444 pibt2 35515 mblfinlem3 35743 dochdmj1 39331 mptrcllem 41110 clcnvlem 41120 dfrcl2 41171 relexpss1d 41202 corclrcl 41204 relexp0a 41213 corcltrcl 41236 frege131d 41261 |
Copyright terms: Public domain | W3C validator |