![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unss12 | Structured version Visualization version GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
Ref | Expression |
---|---|
unss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss1 4039 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
2 | unss2 4041 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | |
3 | 1, 2 | sylan9ss 3867 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∪ cun 3823 ⊆ wss 3825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-v 3411 df-un 3830 df-in 3832 df-ss 3839 |
This theorem is referenced by: pwssun 5301 fun 6363 undom 8393 finsschain 8618 trclun 14225 relexpfld 14259 mulgfval 18003 mvdco 18324 dprd2da 18904 dmdprdsplit2lem 18907 lspun 19471 spanuni 29092 sshhococi 29094 mthmpps 32289 pibt2 34074 mblfinlem3 34320 dochdmj1 37919 mptrcllem 39281 clcnvlem 39291 dfrcl2 39327 relexpss1d 39358 corclrcl 39360 relexp0a 39369 corcltrcl 39392 frege131d 39417 |
Copyright terms: Public domain | W3C validator |