| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unss12 | Structured version Visualization version GIF version | ||
| Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
| Ref | Expression |
|---|---|
| unss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss1 4165 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
| 2 | unss2 4167 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | |
| 3 | 1, 2 | sylan9ss 3977 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3929 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 |
| This theorem is referenced by: pwssun 5550 fun 6745 f1un 6843 undomOLD 9079 finsschain 9376 trclun 15038 relexpfld 15073 mulgfval 19057 mvdco 19431 dprd2da 20030 dmdprdsplit2lem 20033 lspun 20949 mulsproplem13 28088 mulsproplem14 28089 spanuni 31530 sshhococi 31532 mthmpps 35609 pibt2 37440 mblfinlem3 37688 dochdmj1 41414 mptrcllem 43604 clcnvlem 43614 dfrcl2 43665 relexpss1d 43696 corclrcl 43698 relexp0a 43707 corcltrcl 43730 frege131d 43755 |
| Copyright terms: Public domain | W3C validator |