MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss12 Structured version   Visualization version   GIF version

Theorem unss12 4151
Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.)
Assertion
Ref Expression
unss12 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))

Proof of Theorem unss12
StepHypRef Expression
1 unss1 4148 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 unss2 4150 . 2 (𝐶𝐷 → (𝐵𝐶) ⊆ (𝐵𝐷))
31, 2sylan9ss 3960 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cun 3912  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931
This theorem is referenced by:  pwssun  5530  fun  6722  f1un  6820  finsschain  9310  trclun  14980  relexpfld  15015  mulgfval  19001  mvdco  19375  dprd2da  19974  dmdprdsplit2lem  19977  lspun  20893  mulsproplem13  28031  mulsproplem14  28032  spanuni  31473  sshhococi  31475  mthmpps  35569  pibt2  37405  mblfinlem3  37653  dochdmj1  41384  mptrcllem  43602  clcnvlem  43612  dfrcl2  43663  relexpss1d  43694  corclrcl  43696  relexp0a  43705  corcltrcl  43728  frege131d  43753
  Copyright terms: Public domain W3C validator