MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss12 Structured version   Visualization version   GIF version

Theorem unss12 4138
Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.)
Assertion
Ref Expression
unss12 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))

Proof of Theorem unss12
StepHypRef Expression
1 unss1 4135 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 unss2 4137 . 2 (𝐶𝐷 → (𝐵𝐶) ⊆ (𝐵𝐷))
31, 2sylan9ss 3948 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cun 3900  wss 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3907  df-ss 3919
This theorem is referenced by:  pwssun  5508  fun  6685  f1un  6783  finsschain  9243  trclun  14921  relexpfld  14956  mulgfval  18982  mvdco  19358  dprd2da  19957  dmdprdsplit2lem  19960  lspun  20921  mulsproplem13  28068  mulsproplem14  28069  spanuni  31522  sshhococi  31524  mthmpps  35624  pibt2  37457  mblfinlem3  37705  dochdmj1  41435  mptrcllem  43652  clcnvlem  43662  dfrcl2  43713  relexpss1d  43744  corclrcl  43746  relexp0a  43755  corcltrcl  43778  frege131d  43803
  Copyright terms: Public domain W3C validator