MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss12 Structured version   Visualization version   GIF version

Theorem unss12 4168
Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.)
Assertion
Ref Expression
unss12 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))

Proof of Theorem unss12
StepHypRef Expression
1 unss1 4165 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 unss2 4167 . 2 (𝐶𝐷 → (𝐵𝐶) ⊆ (𝐵𝐷))
31, 2sylan9ss 3977 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cun 3929  wss 3931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-ss 3948
This theorem is referenced by:  pwssun  5550  fun  6745  f1un  6843  undomOLD  9079  finsschain  9376  trclun  15038  relexpfld  15073  mulgfval  19057  mvdco  19431  dprd2da  20030  dmdprdsplit2lem  20033  lspun  20949  mulsproplem13  28088  mulsproplem14  28089  spanuni  31530  sshhococi  31532  mthmpps  35609  pibt2  37440  mblfinlem3  37688  dochdmj1  41414  mptrcllem  43604  clcnvlem  43614  dfrcl2  43665  relexpss1d  43696  corclrcl  43698  relexp0a  43707  corcltrcl  43730  frege131d  43755
  Copyright terms: Public domain W3C validator