| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unss12 | Structured version Visualization version GIF version | ||
| Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
| Ref | Expression |
|---|---|
| unss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss1 4134 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
| 2 | unss2 4136 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | |
| 3 | 1, 2 | sylan9ss 3944 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3896 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 |
| This theorem is referenced by: pwssun 5513 fun 6692 f1un 6790 finsschain 9252 trclun 14925 relexpfld 14960 mulgfval 18986 mvdco 19361 dprd2da 19960 dmdprdsplit2lem 19963 lspun 20924 mulsproplem13 28070 mulsproplem14 28071 spanuni 31528 sshhococi 31530 mthmpps 35649 pibt2 37484 mblfinlem3 37722 dochdmj1 41512 mptrcllem 43733 clcnvlem 43743 dfrcl2 43794 relexpss1d 43825 corclrcl 43827 relexp0a 43836 corcltrcl 43859 frege131d 43884 |
| Copyright terms: Public domain | W3C validator |