| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unss12 | Structured version Visualization version GIF version | ||
| Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
| Ref | Expression |
|---|---|
| unss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss1 4138 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
| 2 | unss2 4140 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | |
| 3 | 1, 2 | sylan9ss 3951 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3903 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-ss 3922 |
| This theorem is referenced by: pwssun 5515 fun 6690 f1un 6788 finsschain 9268 trclun 14939 relexpfld 14974 mulgfval 18966 mvdco 19342 dprd2da 19941 dmdprdsplit2lem 19944 lspun 20908 mulsproplem13 28054 mulsproplem14 28055 spanuni 31506 sshhococi 31508 mthmpps 35557 pibt2 37393 mblfinlem3 37641 dochdmj1 41372 mptrcllem 43589 clcnvlem 43599 dfrcl2 43650 relexpss1d 43681 corclrcl 43683 relexp0a 43692 corcltrcl 43715 frege131d 43740 |
| Copyright terms: Public domain | W3C validator |