MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardmin Structured version   Visualization version   GIF version

Theorem cardmin 9975
Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
cardmin (𝐴𝑉 → (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem cardmin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 numthcor 9905 . . 3 (𝐴𝑉 → ∃𝑥 ∈ On 𝐴𝑥)
2 onintrab2 7497 . . 3 (∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
31, 2sylib 221 . 2 (𝐴𝑉 {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
4 onelon 6184 . . . . . . . . 9 (( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 ∈ On)
54ex 416 . . . . . . . 8 ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 ∈ On))
63, 5syl 17 . . . . . . 7 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 ∈ On))
7 breq2 5034 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
87onnminsb 7499 . . . . . . 7 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → ¬ 𝐴𝑦))
96, 8syli 39 . . . . . 6 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → ¬ 𝐴𝑦))
10 vex 3444 . . . . . . 7 𝑦 ∈ V
11 domtri 9967 . . . . . . 7 ((𝑦 ∈ V ∧ 𝐴𝑉) → (𝑦𝐴 ↔ ¬ 𝐴𝑦))
1210, 11mpan 689 . . . . . 6 (𝐴𝑉 → (𝑦𝐴 ↔ ¬ 𝐴𝑦))
139, 12sylibrd 262 . . . . 5 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦𝐴))
14 nfcv 2955 . . . . . . . 8 𝑥𝐴
15 nfcv 2955 . . . . . . . 8 𝑥
16 nfrab1 3337 . . . . . . . . 9 𝑥{𝑥 ∈ On ∣ 𝐴𝑥}
1716nfint 4848 . . . . . . . 8 𝑥 {𝑥 ∈ On ∣ 𝐴𝑥}
1814, 15, 17nfbr 5077 . . . . . . 7 𝑥 𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}
19 breq2 5034 . . . . . . 7 (𝑥 = {𝑥 ∈ On ∣ 𝐴𝑥} → (𝐴𝑥𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}))
2018, 19onminsb 7494 . . . . . 6 (∃𝑥 ∈ On 𝐴𝑥𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})
211, 20syl 17 . . . . 5 (𝐴𝑉𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})
2213, 21jctird 530 . . . 4 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → (𝑦𝐴𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})))
23 domsdomtr 8636 . . . 4 ((𝑦𝐴𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
2422, 23syl6 35 . . 3 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
2524ralrimiv 3148 . 2 (𝐴𝑉 → ∀𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
26 iscard 9388 . 2 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} ↔ ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ ∀𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
273, 25, 26sylanbrc 586 1 (𝐴𝑉 → (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  {crab 3110  Vcvv 3441   cint 4838   class class class wbr 5030  Oncon0 6159  cfv 6324  cdom 8490  csdm 8491  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-ac2 9874
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-wrecs 7930  df-recs 7991  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-card 9352  df-ac 9527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator