![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardmin | Structured version Visualization version GIF version |
Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
cardmin | ⊢ (𝐴 ∈ 𝑉 → (card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numthcor 10563 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On 𝐴 ≺ 𝑥) | |
2 | onintrab2 7833 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 ≺ 𝑥 ↔ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On) | |
3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On) |
4 | onelon 6420 | . . . . . . . . 9 ⊢ ((∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On ∧ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → 𝑦 ∈ On) | |
5 | 4 | ex 412 | . . . . . . . 8 ⊢ (∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ∈ On)) |
6 | 3, 5 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ∈ On)) |
7 | breq2 5170 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ 𝑦)) | |
8 | 7 | onnminsb 7835 | . . . . . . 7 ⊢ (𝑦 ∈ On → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ¬ 𝐴 ≺ 𝑦)) |
9 | 6, 8 | syli 39 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ¬ 𝐴 ≺ 𝑦)) |
10 | vex 3492 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
11 | domtri 10625 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑦 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝑦)) | |
12 | 10, 11 | mpan 689 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝑦)) |
13 | 9, 12 | sylibrd 259 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ≼ 𝐴)) |
14 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
15 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑥 ≺ | |
16 | nfrab1 3464 | . . . . . . . . 9 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} | |
17 | 16 | nfint 4980 | . . . . . . . 8 ⊢ Ⅎ𝑥∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} |
18 | 14, 15, 17 | nfbr 5213 | . . . . . . 7 ⊢ Ⅎ𝑥 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} |
19 | breq2 5170 | . . . . . . 7 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) | |
20 | 18, 19 | onminsb 7830 | . . . . . 6 ⊢ (∃𝑥 ∈ On 𝐴 ≺ 𝑥 → 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
21 | 1, 20 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
22 | 13, 21 | jctird 526 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → (𝑦 ≼ 𝐴 ∧ 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}))) |
23 | domsdomtr 9178 | . . . 4 ⊢ ((𝑦 ≼ 𝐴 ∧ 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → 𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) | |
24 | 22, 23 | syl6 35 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) |
25 | 24 | ralrimiv 3151 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
26 | iscard 10044 | . 2 ⊢ ((card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ↔ (∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) | |
27 | 3, 25, 26 | sylanbrc 582 | 1 ⊢ (𝐴 ∈ 𝑉 → (card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {crab 3443 Vcvv 3488 ∩ cint 4970 class class class wbr 5166 Oncon0 6395 ‘cfv 6573 ≼ cdom 9001 ≺ csdm 9002 cardccrd 10004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-ac2 10532 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-card 10008 df-ac 10185 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |