MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardmin Structured version   Visualization version   GIF version

Theorem cardmin 10330
Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
cardmin (𝐴𝑉 → (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem cardmin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 numthcor 10260 . . 3 (𝐴𝑉 → ∃𝑥 ∈ On 𝐴𝑥)
2 onintrab2 7637 . . 3 (∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
31, 2sylib 217 . 2 (𝐴𝑉 {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
4 onelon 6284 . . . . . . . . 9 (( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 ∈ On)
54ex 413 . . . . . . . 8 ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 ∈ On))
63, 5syl 17 . . . . . . 7 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 ∈ On))
7 breq2 5077 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
87onnminsb 7639 . . . . . . 7 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → ¬ 𝐴𝑦))
96, 8syli 39 . . . . . 6 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → ¬ 𝐴𝑦))
10 vex 3433 . . . . . . 7 𝑦 ∈ V
11 domtri 10322 . . . . . . 7 ((𝑦 ∈ V ∧ 𝐴𝑉) → (𝑦𝐴 ↔ ¬ 𝐴𝑦))
1210, 11mpan 687 . . . . . 6 (𝐴𝑉 → (𝑦𝐴 ↔ ¬ 𝐴𝑦))
139, 12sylibrd 258 . . . . 5 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦𝐴))
14 nfcv 2907 . . . . . . . 8 𝑥𝐴
15 nfcv 2907 . . . . . . . 8 𝑥
16 nfrab1 3315 . . . . . . . . 9 𝑥{𝑥 ∈ On ∣ 𝐴𝑥}
1716nfint 4889 . . . . . . . 8 𝑥 {𝑥 ∈ On ∣ 𝐴𝑥}
1814, 15, 17nfbr 5120 . . . . . . 7 𝑥 𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}
19 breq2 5077 . . . . . . 7 (𝑥 = {𝑥 ∈ On ∣ 𝐴𝑥} → (𝐴𝑥𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}))
2018, 19onminsb 7634 . . . . . 6 (∃𝑥 ∈ On 𝐴𝑥𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})
211, 20syl 17 . . . . 5 (𝐴𝑉𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})
2213, 21jctird 527 . . . 4 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → (𝑦𝐴𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})))
23 domsdomtr 8886 . . . 4 ((𝑦𝐴𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
2422, 23syl6 35 . . 3 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
2524ralrimiv 3107 . 2 (𝐴𝑉 → ∀𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
26 iscard 9743 . 2 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} ↔ ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ ∀𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
273, 25, 26sylanbrc 583 1 (𝐴𝑉 → (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3429   cint 4879   class class class wbr 5073  Oncon0 6259  cfv 6426  cdom 8718  csdm 8719  cardccrd 9703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-ac2 10229
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-card 9707  df-ac 9882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator