![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardmin | Structured version Visualization version GIF version |
Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
cardmin | ⊢ (𝐴 ∈ 𝑉 → (card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numthcor 10525 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On 𝐴 ≺ 𝑥) | |
2 | onintrab2 7795 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 ≺ 𝑥 ↔ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On) |
4 | onelon 6390 | . . . . . . . . 9 ⊢ ((∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On ∧ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → 𝑦 ∈ On) | |
5 | 4 | ex 411 | . . . . . . . 8 ⊢ (∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ∈ On)) |
6 | 3, 5 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ∈ On)) |
7 | breq2 5147 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ 𝑦)) | |
8 | 7 | onnminsb 7797 | . . . . . . 7 ⊢ (𝑦 ∈ On → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ¬ 𝐴 ≺ 𝑦)) |
9 | 6, 8 | syli 39 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ¬ 𝐴 ≺ 𝑦)) |
10 | vex 3466 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
11 | domtri 10587 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑦 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝑦)) | |
12 | 10, 11 | mpan 688 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝑦)) |
13 | 9, 12 | sylibrd 258 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ≼ 𝐴)) |
14 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
15 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑥 ≺ | |
16 | nfrab1 3439 | . . . . . . . . 9 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} | |
17 | 16 | nfint 4956 | . . . . . . . 8 ⊢ Ⅎ𝑥∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} |
18 | 14, 15, 17 | nfbr 5190 | . . . . . . 7 ⊢ Ⅎ𝑥 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} |
19 | breq2 5147 | . . . . . . 7 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) | |
20 | 18, 19 | onminsb 7792 | . . . . . 6 ⊢ (∃𝑥 ∈ On 𝐴 ≺ 𝑥 → 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
21 | 1, 20 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
22 | 13, 21 | jctird 525 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → (𝑦 ≼ 𝐴 ∧ 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}))) |
23 | domsdomtr 9139 | . . . 4 ⊢ ((𝑦 ≼ 𝐴 ∧ 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → 𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) | |
24 | 22, 23 | syl6 35 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) |
25 | 24 | ralrimiv 3135 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
26 | iscard 10008 | . 2 ⊢ ((card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ↔ (∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) | |
27 | 3, 25, 26 | sylanbrc 581 | 1 ⊢ (𝐴 ∈ 𝑉 → (card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∃wrex 3060 {crab 3419 Vcvv 3462 ∩ cint 4946 class class class wbr 5143 Oncon0 6365 ‘cfv 6543 ≼ cdom 8961 ≺ csdm 8962 cardccrd 9968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-ac2 10494 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-er 8723 df-en 8964 df-dom 8965 df-sdom 8966 df-card 9972 df-ac 10149 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |