Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cardmin | Structured version Visualization version GIF version |
Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
cardmin | ⊢ (𝐴 ∈ 𝑉 → (card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numthcor 10260 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On 𝐴 ≺ 𝑥) | |
2 | onintrab2 7637 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 ≺ 𝑥 ↔ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On) |
4 | onelon 6284 | . . . . . . . . 9 ⊢ ((∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On ∧ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → 𝑦 ∈ On) | |
5 | 4 | ex 413 | . . . . . . . 8 ⊢ (∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ∈ On)) |
6 | 3, 5 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ∈ On)) |
7 | breq2 5077 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ 𝑦)) | |
8 | 7 | onnminsb 7639 | . . . . . . 7 ⊢ (𝑦 ∈ On → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ¬ 𝐴 ≺ 𝑦)) |
9 | 6, 8 | syli 39 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ¬ 𝐴 ≺ 𝑦)) |
10 | vex 3433 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
11 | domtri 10322 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑦 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝑦)) | |
12 | 10, 11 | mpan 687 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝑦)) |
13 | 9, 12 | sylibrd 258 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ≼ 𝐴)) |
14 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
15 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑥 ≺ | |
16 | nfrab1 3315 | . . . . . . . . 9 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} | |
17 | 16 | nfint 4889 | . . . . . . . 8 ⊢ Ⅎ𝑥∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} |
18 | 14, 15, 17 | nfbr 5120 | . . . . . . 7 ⊢ Ⅎ𝑥 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} |
19 | breq2 5077 | . . . . . . 7 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) | |
20 | 18, 19 | onminsb 7634 | . . . . . 6 ⊢ (∃𝑥 ∈ On 𝐴 ≺ 𝑥 → 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
21 | 1, 20 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
22 | 13, 21 | jctird 527 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → (𝑦 ≼ 𝐴 ∧ 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}))) |
23 | domsdomtr 8886 | . . . 4 ⊢ ((𝑦 ≼ 𝐴 ∧ 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → 𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) | |
24 | 22, 23 | syl6 35 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) |
25 | 24 | ralrimiv 3107 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
26 | iscard 9743 | . 2 ⊢ ((card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ↔ (∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) | |
27 | 3, 25, 26 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ 𝑉 → (card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 {crab 3068 Vcvv 3429 ∩ cint 4879 class class class wbr 5073 Oncon0 6259 ‘cfv 6426 ≼ cdom 8718 ≺ csdm 8719 cardccrd 9703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-ac2 10229 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-card 9707 df-ac 9882 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |