MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardmin Structured version   Visualization version   GIF version

Theorem cardmin 10562
Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
cardmin (𝐴 ∈ 𝑉 β†’ (cardβ€˜βˆ© {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
Distinct variable group:   π‘₯,𝐴
Allowed substitution hint:   𝑉(π‘₯)

Proof of Theorem cardmin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 numthcor 10492 . . 3 (𝐴 ∈ 𝑉 β†’ βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯)
2 onintrab2 7788 . . 3 (βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ↔ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ On)
31, 2sylib 217 . 2 (𝐴 ∈ 𝑉 β†’ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ On)
4 onelon 6389 . . . . . . . . 9 ((∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ On ∧ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) β†’ 𝑦 ∈ On)
54ex 412 . . . . . . . 8 (∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ On β†’ (𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ 𝑦 ∈ On))
63, 5syl 17 . . . . . . 7 (𝐴 ∈ 𝑉 β†’ (𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ 𝑦 ∈ On))
7 breq2 5152 . . . . . . . 8 (π‘₯ = 𝑦 β†’ (𝐴 β‰Ί π‘₯ ↔ 𝐴 β‰Ί 𝑦))
87onnminsb 7790 . . . . . . 7 (𝑦 ∈ On β†’ (𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ Β¬ 𝐴 β‰Ί 𝑦))
96, 8syli 39 . . . . . 6 (𝐴 ∈ 𝑉 β†’ (𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ Β¬ 𝐴 β‰Ί 𝑦))
10 vex 3477 . . . . . . 7 𝑦 ∈ V
11 domtri 10554 . . . . . . 7 ((𝑦 ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝑦 β‰Ό 𝐴 ↔ Β¬ 𝐴 β‰Ί 𝑦))
1210, 11mpan 687 . . . . . 6 (𝐴 ∈ 𝑉 β†’ (𝑦 β‰Ό 𝐴 ↔ Β¬ 𝐴 β‰Ί 𝑦))
139, 12sylibrd 259 . . . . 5 (𝐴 ∈ 𝑉 β†’ (𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ 𝑦 β‰Ό 𝐴))
14 nfcv 2902 . . . . . . . 8 β„²π‘₯𝐴
15 nfcv 2902 . . . . . . . 8 β„²π‘₯ β‰Ί
16 nfrab1 3450 . . . . . . . . 9 β„²π‘₯{π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}
1716nfint 4960 . . . . . . . 8 β„²π‘₯∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}
1814, 15, 17nfbr 5195 . . . . . . 7 β„²π‘₯ 𝐴 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}
19 breq2 5152 . . . . . . 7 (π‘₯ = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ (𝐴 β‰Ί π‘₯ ↔ 𝐴 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}))
2018, 19onminsb 7785 . . . . . 6 (βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ β†’ 𝐴 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
211, 20syl 17 . . . . 5 (𝐴 ∈ 𝑉 β†’ 𝐴 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
2213, 21jctird 526 . . . 4 (𝐴 ∈ 𝑉 β†’ (𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ (𝑦 β‰Ό 𝐴 ∧ 𝐴 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})))
23 domsdomtr 9115 . . . 4 ((𝑦 β‰Ό 𝐴 ∧ 𝐴 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) β†’ 𝑦 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
2422, 23syl6 35 . . 3 (𝐴 ∈ 𝑉 β†’ (𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ 𝑦 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}))
2524ralrimiv 3144 . 2 (𝐴 ∈ 𝑉 β†’ βˆ€π‘¦ ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}𝑦 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
26 iscard 9973 . 2 ((cardβ€˜βˆ© {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ↔ (∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ On ∧ βˆ€π‘¦ ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}𝑦 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}))
273, 25, 26sylanbrc 582 1 (𝐴 ∈ 𝑉 β†’ (cardβ€˜βˆ© {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  βˆƒwrex 3069  {crab 3431  Vcvv 3473  βˆ© cint 4950   class class class wbr 5148  Oncon0 6364  β€˜cfv 6543   β‰Ό cdom 8940   β‰Ί csdm 8941  cardccrd 9933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-ac2 10461
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-card 9937  df-ac 10114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator