Step | Hyp | Ref
| Expression |
1 | | numthcor 10492 |
. . 3
β’ (π΄ β π β βπ₯ β On π΄ βΊ π₯) |
2 | | onintrab2 7788 |
. . 3
β’
(βπ₯ β On
π΄ βΊ π₯ β β© {π₯
β On β£ π΄ βΊ
π₯} β
On) |
3 | 1, 2 | sylib 217 |
. 2
β’ (π΄ β π β β© {π₯ β On β£ π΄ βΊ π₯} β On) |
4 | | onelon 6389 |
. . . . . . . . 9
β’ ((β© {π₯
β On β£ π΄ βΊ
π₯} β On β§ π¦ β β© {π₯
β On β£ π΄ βΊ
π₯}) β π¦ β On) |
5 | 4 | ex 412 |
. . . . . . . 8
β’ (β© {π₯
β On β£ π΄ βΊ
π₯} β On β (π¦ β β© {π₯
β On β£ π΄ βΊ
π₯} β π¦ β On)) |
6 | 3, 5 | syl 17 |
. . . . . . 7
β’ (π΄ β π β (π¦ β β© {π₯ β On β£ π΄ βΊ π₯} β π¦ β On)) |
7 | | breq2 5152 |
. . . . . . . 8
β’ (π₯ = π¦ β (π΄ βΊ π₯ β π΄ βΊ π¦)) |
8 | 7 | onnminsb 7790 |
. . . . . . 7
β’ (π¦ β On β (π¦ β β© {π₯
β On β£ π΄ βΊ
π₯} β Β¬ π΄ βΊ π¦)) |
9 | 6, 8 | syli 39 |
. . . . . 6
β’ (π΄ β π β (π¦ β β© {π₯ β On β£ π΄ βΊ π₯} β Β¬ π΄ βΊ π¦)) |
10 | | vex 3477 |
. . . . . . 7
β’ π¦ β V |
11 | | domtri 10554 |
. . . . . . 7
β’ ((π¦ β V β§ π΄ β π) β (π¦ βΌ π΄ β Β¬ π΄ βΊ π¦)) |
12 | 10, 11 | mpan 687 |
. . . . . 6
β’ (π΄ β π β (π¦ βΌ π΄ β Β¬ π΄ βΊ π¦)) |
13 | 9, 12 | sylibrd 259 |
. . . . 5
β’ (π΄ β π β (π¦ β β© {π₯ β On β£ π΄ βΊ π₯} β π¦ βΌ π΄)) |
14 | | nfcv 2902 |
. . . . . . . 8
β’
β²π₯π΄ |
15 | | nfcv 2902 |
. . . . . . . 8
β’
β²π₯
βΊ |
16 | | nfrab1 3450 |
. . . . . . . . 9
β’
β²π₯{π₯ β On β£ π΄ βΊ π₯} |
17 | 16 | nfint 4960 |
. . . . . . . 8
β’
β²π₯β© {π₯
β On β£ π΄ βΊ
π₯} |
18 | 14, 15, 17 | nfbr 5195 |
. . . . . . 7
β’
β²π₯ π΄ βΊ β© {π₯
β On β£ π΄ βΊ
π₯} |
19 | | breq2 5152 |
. . . . . . 7
β’ (π₯ = β©
{π₯ β On β£ π΄ βΊ π₯} β (π΄ βΊ π₯ β π΄ βΊ β© {π₯ β On β£ π΄ βΊ π₯})) |
20 | 18, 19 | onminsb 7785 |
. . . . . 6
β’
(βπ₯ β On
π΄ βΊ π₯ β π΄ βΊ β© {π₯ β On β£ π΄ βΊ π₯}) |
21 | 1, 20 | syl 17 |
. . . . 5
β’ (π΄ β π β π΄ βΊ β© {π₯ β On β£ π΄ βΊ π₯}) |
22 | 13, 21 | jctird 526 |
. . . 4
β’ (π΄ β π β (π¦ β β© {π₯ β On β£ π΄ βΊ π₯} β (π¦ βΌ π΄ β§ π΄ βΊ β© {π₯ β On β£ π΄ βΊ π₯}))) |
23 | | domsdomtr 9115 |
. . . 4
β’ ((π¦ βΌ π΄ β§ π΄ βΊ β© {π₯ β On β£ π΄ βΊ π₯}) β π¦ βΊ β© {π₯ β On β£ π΄ βΊ π₯}) |
24 | 22, 23 | syl6 35 |
. . 3
β’ (π΄ β π β (π¦ β β© {π₯ β On β£ π΄ βΊ π₯} β π¦ βΊ β© {π₯ β On β£ π΄ βΊ π₯})) |
25 | 24 | ralrimiv 3144 |
. 2
β’ (π΄ β π β βπ¦ β β© {π₯ β On β£ π΄ βΊ π₯}π¦ βΊ β© {π₯ β On β£ π΄ βΊ π₯}) |
26 | | iscard 9973 |
. 2
β’
((cardββ© {π₯ β On β£ π΄ βΊ π₯}) = β© {π₯ β On β£ π΄ βΊ π₯} β (β© {π₯ β On β£ π΄ βΊ π₯} β On β§ βπ¦ β β© {π₯ β On β£ π΄ βΊ π₯}π¦ βΊ β© {π₯ β On β£ π΄ βΊ π₯})) |
27 | 3, 25, 26 | sylanbrc 582 |
1
β’ (π΄ β π β (cardββ© {π₯
β On β£ π΄ βΊ
π₯}) = β© {π₯
β On β£ π΄ βΊ
π₯}) |