MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardmin Structured version   Visualization version   GIF version

Theorem cardmin 10458
Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
cardmin (𝐴𝑉 → (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem cardmin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 numthcor 10388 . . 3 (𝐴𝑉 → ∃𝑥 ∈ On 𝐴𝑥)
2 onintrab2 7733 . . 3 (∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
31, 2sylib 218 . 2 (𝐴𝑉 {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
4 onelon 6332 . . . . . . . . 9 (( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 ∈ On)
54ex 412 . . . . . . . 8 ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 ∈ On))
63, 5syl 17 . . . . . . 7 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 ∈ On))
7 breq2 5096 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
87onnminsb 7735 . . . . . . 7 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → ¬ 𝐴𝑦))
96, 8syli 39 . . . . . 6 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → ¬ 𝐴𝑦))
10 vex 3440 . . . . . . 7 𝑦 ∈ V
11 domtri 10450 . . . . . . 7 ((𝑦 ∈ V ∧ 𝐴𝑉) → (𝑦𝐴 ↔ ¬ 𝐴𝑦))
1210, 11mpan 690 . . . . . 6 (𝐴𝑉 → (𝑦𝐴 ↔ ¬ 𝐴𝑦))
139, 12sylibrd 259 . . . . 5 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦𝐴))
14 nfcv 2891 . . . . . . . 8 𝑥𝐴
15 nfcv 2891 . . . . . . . 8 𝑥
16 nfrab1 3415 . . . . . . . . 9 𝑥{𝑥 ∈ On ∣ 𝐴𝑥}
1716nfint 4906 . . . . . . . 8 𝑥 {𝑥 ∈ On ∣ 𝐴𝑥}
1814, 15, 17nfbr 5139 . . . . . . 7 𝑥 𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}
19 breq2 5096 . . . . . . 7 (𝑥 = {𝑥 ∈ On ∣ 𝐴𝑥} → (𝐴𝑥𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}))
2018, 19onminsb 7730 . . . . . 6 (∃𝑥 ∈ On 𝐴𝑥𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})
211, 20syl 17 . . . . 5 (𝐴𝑉𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})
2213, 21jctird 526 . . . 4 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → (𝑦𝐴𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})))
23 domsdomtr 9029 . . . 4 ((𝑦𝐴𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
2422, 23syl6 35 . . 3 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
2524ralrimiv 3120 . 2 (𝐴𝑉 → ∀𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
26 iscard 9871 . 2 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} ↔ ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ ∀𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
273, 25, 26sylanbrc 583 1 (𝐴𝑉 → (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  Vcvv 3436   cint 4896   class class class wbr 5092  Oncon0 6307  cfv 6482  cdom 8870  csdm 8871  cardccrd 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-ac2 10357
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-card 9835  df-ac 10010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator