Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpomndo Structured version   Visualization version   GIF version

Theorem grpomndo 35145
Description: A group is a monoid. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grpomndo (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)

Proof of Theorem grpomndo
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2819 . . . . 5 ran 𝐺 = ran 𝐺
21isgrpo 28266 . . . 4 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤))))
32biimpd 231 . . 3 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤))))
41grpoidinv 28277 . . . . . . . 8 (𝐺 ∈ GrpOp → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)))
5 simpl 485 . . . . . . . . . . 11 ((((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
65ralimi 3158 . . . . . . . . . 10 (∀𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ∀𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
76reximi 3241 . . . . . . . . 9 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
81ismndo2 35144 . . . . . . . . . . . . 13 (𝐺 ∈ GrpOp → (𝐺 ∈ MndOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
98biimprcd 252 . . . . . . . . . . . 12 ((𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
1093exp 1114 . . . . . . . . . . 11 (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
1110impcom 410 . . . . . . . . . 10 ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)))
1211com3l 89 . . . . . . . . 9 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp)))
137, 12syl 17 . . . . . . . 8 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp)))
144, 13mpcom 38 . . . . . . 7 (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp))
1514expdcom 417 . . . . . 6 (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)))
1615a1i 11 . . . . 5 (∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤) → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
1716com13 88 . . . 4 (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
18173imp 1106 . . 3 ((𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤)) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
193, 18syli 39 . 2 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
2019pm2.43i 52 1 (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  wrex 3137   × cxp 5546  ran crn 5549  wf 6344  (class class class)co 7148  GrpOpcgr 28258  MndOpcmndo 35136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fo 6354  df-fv 6356  df-ov 7151  df-grpo 28262  df-ass 35113  df-exid 35115  df-mgmOLD 35119  df-sgrOLD 35131  df-mndo 35137
This theorem is referenced by:  isdrngo2  35228
  Copyright terms: Public domain W3C validator