Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpomndo Structured version   Visualization version   GIF version

Theorem grpomndo 35021
Description: A group is a monoid. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grpomndo (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)

Proof of Theorem grpomndo
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2826 . . . . 5 ran 𝐺 = ran 𝐺
21isgrpo 28188 . . . 4 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤))))
32biimpd 230 . . 3 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤))))
41grpoidinv 28199 . . . . . . . 8 (𝐺 ∈ GrpOp → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)))
5 simpl 483 . . . . . . . . . . 11 ((((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
65ralimi 3165 . . . . . . . . . 10 (∀𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ∀𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
76reximi 3248 . . . . . . . . 9 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
81ismndo2 35020 . . . . . . . . . . . . 13 (𝐺 ∈ GrpOp → (𝐺 ∈ MndOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
98biimprcd 251 . . . . . . . . . . . 12 ((𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
1093exp 1113 . . . . . . . . . . 11 (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
1110impcom 408 . . . . . . . . . 10 ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)))
1211com3l 89 . . . . . . . . 9 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp)))
137, 12syl 17 . . . . . . . 8 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp)))
144, 13mpcom 38 . . . . . . 7 (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp))
1514expdcom 415 . . . . . 6 (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)))
1615a1i 11 . . . . 5 (∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤) → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
1716com13 88 . . . 4 (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
18173imp 1105 . . 3 ((𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤)) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
193, 18syli 39 . 2 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
2019pm2.43i 52 1 (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3143  wrex 3144   × cxp 5552  ran crn 5555  wf 6348  (class class class)co 7148  GrpOpcgr 28180  MndOpcmndo 35012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-fo 6358  df-fv 6360  df-ov 7151  df-grpo 28184  df-ass 34989  df-exid 34991  df-mgmOLD 34995  df-sgrOLD 35007  df-mndo 35013
This theorem is referenced by:  isdrngo2  35104
  Copyright terms: Public domain W3C validator