Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpomndo Structured version   Visualization version   GIF version

Theorem grpomndo 37876
Description: A group is a monoid. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grpomndo (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)

Proof of Theorem grpomndo
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . 5 ran 𝐺 = ran 𝐺
21isgrpo 30542 . . . 4 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤))))
32biimpd 229 . . 3 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤))))
41grpoidinv 30553 . . . . . . . 8 (𝐺 ∈ GrpOp → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)))
5 simpl 482 . . . . . . . . . . 11 ((((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
65ralimi 3083 . . . . . . . . . 10 (∀𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ∀𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
76reximi 3084 . . . . . . . . 9 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
81ismndo2 37875 . . . . . . . . . . . . 13 (𝐺 ∈ GrpOp → (𝐺 ∈ MndOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
98biimprcd 250 . . . . . . . . . . . 12 ((𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
1093exp 1120 . . . . . . . . . . 11 (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
1110impcom 407 . . . . . . . . . 10 ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)))
1211com3l 89 . . . . . . . . 9 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp)))
137, 12syl 17 . . . . . . . 8 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp)))
144, 13mpcom 38 . . . . . . 7 (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp))
1514expdcom 414 . . . . . 6 (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)))
1615a1i 11 . . . . 5 (∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤) → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
1716com13 88 . . . 4 (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
18173imp 1111 . . 3 ((𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤)) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
193, 18syli 39 . 2 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
2019pm2.43i 52 1 (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  wral 3061  wrex 3070   × cxp 5691  ran crn 5694  wf 6565  (class class class)co 7438  GrpOpcgr 30534  MndOpcmndo 37867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-fo 6575  df-fv 6577  df-ov 7441  df-grpo 30538  df-ass 37844  df-exid 37846  df-mgmOLD 37850  df-sgrOLD 37862  df-mndo 37868
This theorem is referenced by:  isdrngo2  37959
  Copyright terms: Public domain W3C validator