Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpomndo Structured version   Visualization version   GIF version

Theorem grpomndo 37816
Description: A group is a monoid. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grpomndo (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)

Proof of Theorem grpomndo
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . 5 ran 𝐺 = ran 𝐺
21isgrpo 30443 . . . 4 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤))))
32biimpd 229 . . 3 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤))))
41grpoidinv 30454 . . . . . . . 8 (𝐺 ∈ GrpOp → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)))
5 simpl 482 . . . . . . . . . . 11 ((((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
65ralimi 3072 . . . . . . . . . 10 (∀𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ∀𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
76reximi 3073 . . . . . . . . 9 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))
81ismndo2 37815 . . . . . . . . . . . . 13 (𝐺 ∈ GrpOp → (𝐺 ∈ MndOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
98biimprcd 250 . . . . . . . . . . . 12 ((𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
1093exp 1119 . . . . . . . . . . 11 (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
1110impcom 407 . . . . . . . . . 10 ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)))
1211com3l 89 . . . . . . . . 9 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) → (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp)))
137, 12syl 17 . . . . . . . 8 (∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦) ∧ ∃𝑤 ∈ ran 𝐺((𝑤𝐺𝑦) = 𝑥 ∧ (𝑦𝐺𝑤) = 𝑥)) → (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp)))
144, 13mpcom 38 . . . . . . 7 (𝐺 ∈ GrpOp → ((∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) → 𝐺 ∈ MndOp))
1514expdcom 414 . . . . . 6 (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)))
1615a1i 11 . . . . 5 (∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤) → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
1716com13 88 . . . 4 (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → (∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))))
18173imp 1110 . . 3 ((𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑤 ∈ ran 𝐺𝑥 ∈ ran 𝐺((𝑤𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑤)) → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
193, 18syli 39 . 2 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp))
2019pm2.43i 52 1 (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059   × cxp 5663  ran crn 5666  wf 6536  (class class class)co 7412  GrpOpcgr 30435  MndOpcmndo 37807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-ov 7415  df-grpo 30439  df-ass 37784  df-exid 37786  df-mgmOLD 37790  df-sgrOLD 37802  df-mndo 37808
This theorem is referenced by:  isdrngo2  37899
  Copyright terms: Public domain W3C validator