MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem2 Structured version   Visualization version   GIF version

Theorem seqomlem2 8490
Description: Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
Hypothesis
Ref Expression
seqomlem.a 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
Assertion
Ref Expression
seqomlem2 (𝑄 “ ω) Fn ω
Distinct variable groups:   𝑄,𝑖,𝑣   𝑖,𝐹,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑖)

Proof of Theorem seqomlem2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8474 . . . . . . 7 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω
2 seqomlem.a . . . . . . . . 9 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
32reseq1i 5996 . . . . . . . 8 (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)
43fneq1i 6666 . . . . . . 7 ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω)
51, 4mpbir 231 . . . . . 6 (𝑄 ↾ ω) Fn ω
6 fvres 6926 . . . . . . . . 9 (𝑏 ∈ ω → ((𝑄 ↾ ω)‘𝑏) = (𝑄𝑏))
72seqomlem1 8489 . . . . . . . . 9 (𝑏 ∈ ω → (𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩)
86, 7eqtrd 2775 . . . . . . . 8 (𝑏 ∈ ω → ((𝑄 ↾ ω)‘𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩)
9 fvex 6920 . . . . . . . . 9 (2nd ‘(𝑄𝑏)) ∈ V
10 opelxpi 5726 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (2nd ‘(𝑄𝑏)) ∈ V) → ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ ∈ (ω × V))
119, 10mpan2 691 . . . . . . . 8 (𝑏 ∈ ω → ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ ∈ (ω × V))
128, 11eqeltrd 2839 . . . . . . 7 (𝑏 ∈ ω → ((𝑄 ↾ ω)‘𝑏) ∈ (ω × V))
1312rgen 3061 . . . . . 6 𝑏 ∈ ω ((𝑄 ↾ ω)‘𝑏) ∈ (ω × V)
14 ffnfv 7139 . . . . . 6 ((𝑄 ↾ ω):ω⟶(ω × V) ↔ ((𝑄 ↾ ω) Fn ω ∧ ∀𝑏 ∈ ω ((𝑄 ↾ ω)‘𝑏) ∈ (ω × V)))
155, 13, 14mpbir2an 711 . . . . 5 (𝑄 ↾ ω):ω⟶(ω × V)
16 frn 6744 . . . . 5 ((𝑄 ↾ ω):ω⟶(ω × V) → ran (𝑄 ↾ ω) ⊆ (ω × V))
1715, 16ax-mp 5 . . . 4 ran (𝑄 ↾ ω) ⊆ (ω × V)
18 df-br 5149 . . . . . . . . . 10 (𝑎ran (𝑄 ↾ ω)𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ ran (𝑄 ↾ ω))
19 fvelrnb 6969 . . . . . . . . . . 11 ((𝑄 ↾ ω) Fn ω → (⟨𝑎, 𝑏⟩ ∈ ran (𝑄 ↾ ω) ↔ ∃𝑐 ∈ ω ((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩))
205, 19ax-mp 5 . . . . . . . . . 10 (⟨𝑎, 𝑏⟩ ∈ ran (𝑄 ↾ ω) ↔ ∃𝑐 ∈ ω ((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩)
21 fvres 6926 . . . . . . . . . . . 12 (𝑐 ∈ ω → ((𝑄 ↾ ω)‘𝑐) = (𝑄𝑐))
2221eqeq1d 2737 . . . . . . . . . . 11 (𝑐 ∈ ω → (((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩ ↔ (𝑄𝑐) = ⟨𝑎, 𝑏⟩))
2322rexbiia 3090 . . . . . . . . . 10 (∃𝑐 ∈ ω ((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩ ↔ ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩)
2418, 20, 233bitri 297 . . . . . . . . 9 (𝑎ran (𝑄 ↾ ω)𝑏 ↔ ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩)
252seqomlem1 8489 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ω → (𝑄𝑐) = ⟨𝑐, (2nd ‘(𝑄𝑐))⟩)
2625adantl 481 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → (𝑄𝑐) = ⟨𝑐, (2nd ‘(𝑄𝑐))⟩)
2726eqeq1d 2737 . . . . . . . . . . . . . 14 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ ⟨𝑐, (2nd ‘(𝑄𝑐))⟩ = ⟨𝑎, 𝑏⟩))
28 vex 3482 . . . . . . . . . . . . . . 15 𝑐 ∈ V
29 fvex 6920 . . . . . . . . . . . . . . 15 (2nd ‘(𝑄𝑐)) ∈ V
3028, 29opth1 5486 . . . . . . . . . . . . . 14 (⟨𝑐, (2nd ‘(𝑄𝑐))⟩ = ⟨𝑎, 𝑏⟩ → 𝑐 = 𝑎)
3127, 30biimtrdi 253 . . . . . . . . . . . . 13 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → 𝑐 = 𝑎))
32 fveqeq2 6916 . . . . . . . . . . . . . 14 (𝑐 = 𝑎 → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ (𝑄𝑎) = ⟨𝑎, 𝑏⟩))
3332biimpd 229 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → (𝑄𝑎) = ⟨𝑎, 𝑏⟩))
3431, 33syli 39 . . . . . . . . . . . 12 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → (𝑄𝑎) = ⟨𝑎, 𝑏⟩))
35 fveq2 6907 . . . . . . . . . . . . 13 ((𝑄𝑎) = ⟨𝑎, 𝑏⟩ → (2nd ‘(𝑄𝑎)) = (2nd ‘⟨𝑎, 𝑏⟩))
36 vex 3482 . . . . . . . . . . . . . 14 𝑎 ∈ V
37 vex 3482 . . . . . . . . . . . . . 14 𝑏 ∈ V
3836, 37op2nd 8022 . . . . . . . . . . . . 13 (2nd ‘⟨𝑎, 𝑏⟩) = 𝑏
3935, 38eqtr2di 2792 . . . . . . . . . . . 12 ((𝑄𝑎) = ⟨𝑎, 𝑏⟩ → 𝑏 = (2nd ‘(𝑄𝑎)))
4034, 39syl6 35 . . . . . . . . . . 11 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → 𝑏 = (2nd ‘(𝑄𝑎))))
4140rexlimdva 3153 . . . . . . . . . 10 (𝑎 ∈ ω → (∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩ → 𝑏 = (2nd ‘(𝑄𝑎))))
422seqomlem1 8489 . . . . . . . . . . . 12 (𝑎 ∈ ω → (𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
43 fveqeq2 6916 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → ((𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩))
4443rspcev 3622 . . . . . . . . . . . 12 ((𝑎 ∈ ω ∧ (𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩) → ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
4542, 44mpdan 687 . . . . . . . . . . 11 (𝑎 ∈ ω → ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
46 opeq2 4879 . . . . . . . . . . . . 13 (𝑏 = (2nd ‘(𝑄𝑎)) → ⟨𝑎, 𝑏⟩ = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
4746eqeq2d 2746 . . . . . . . . . . . 12 (𝑏 = (2nd ‘(𝑄𝑎)) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩))
4847rexbidv 3177 . . . . . . . . . . 11 (𝑏 = (2nd ‘(𝑄𝑎)) → (∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩))
4945, 48syl5ibrcom 247 . . . . . . . . . 10 (𝑎 ∈ ω → (𝑏 = (2nd ‘(𝑄𝑎)) → ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩))
5041, 49impbid 212 . . . . . . . . 9 (𝑎 ∈ ω → (∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ 𝑏 = (2nd ‘(𝑄𝑎))))
5124, 50bitrid 283 . . . . . . . 8 (𝑎 ∈ ω → (𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎))))
5251alrimiv 1925 . . . . . . 7 (𝑎 ∈ ω → ∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎))))
53 fvex 6920 . . . . . . . 8 (2nd ‘(𝑄𝑎)) ∈ V
54 eqeq2 2747 . . . . . . . . . 10 (𝑐 = (2nd ‘(𝑄𝑎)) → (𝑏 = 𝑐𝑏 = (2nd ‘(𝑄𝑎))))
5554bibi2d 342 . . . . . . . . 9 (𝑐 = (2nd ‘(𝑄𝑎)) → ((𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐) ↔ (𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎)))))
5655albidv 1918 . . . . . . . 8 (𝑐 = (2nd ‘(𝑄𝑎)) → (∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐) ↔ ∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎)))))
5753, 56spcev 3606 . . . . . . 7 (∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎))) → ∃𝑐𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐))
5852, 57syl 17 . . . . . 6 (𝑎 ∈ ω → ∃𝑐𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐))
59 eu6 2572 . . . . . 6 (∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏 ↔ ∃𝑐𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐))
6058, 59sylibr 234 . . . . 5 (𝑎 ∈ ω → ∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏)
6160rgen 3061 . . . 4 𝑎 ∈ ω ∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏
62 dff3 7120 . . . 4 (ran (𝑄 ↾ ω):ω⟶V ↔ (ran (𝑄 ↾ ω) ⊆ (ω × V) ∧ ∀𝑎 ∈ ω ∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏))
6317, 61, 62mpbir2an 711 . . 3 ran (𝑄 ↾ ω):ω⟶V
64 df-ima 5702 . . . 4 (𝑄 “ ω) = ran (𝑄 ↾ ω)
6564feq1i 6728 . . 3 ((𝑄 “ ω):ω⟶V ↔ ran (𝑄 ↾ ω):ω⟶V)
6663, 65mpbir 231 . 2 (𝑄 “ ω):ω⟶V
67 dffn2 6739 . 2 ((𝑄 “ ω) Fn ω ↔ (𝑄 “ ω):ω⟶V)
6866, 67mpbir 231 1 (𝑄 “ ω) Fn ω
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1535   = wceq 1537  wex 1776  wcel 2106  ∃!weu 2566  wral 3059  wrex 3068  Vcvv 3478  wss 3963  c0 4339  cop 4637   class class class wbr 5148   I cid 5582   × cxp 5687  ran crn 5690  cres 5691  cima 5692  suc csuc 6388   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  ωcom 7887  2nd c2nd 8012  reccrdg 8448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449
This theorem is referenced by:  seqomlem3  8491  seqomlem4  8492  fnseqom  8494
  Copyright terms: Public domain W3C validator