MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem2 Structured version   Visualization version   GIF version

Theorem seqomlem2 8451
Description: Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
Hypothesis
Ref Expression
seqomlem.a 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
Assertion
Ref Expression
seqomlem2 (𝑄 “ ω) Fn ω
Distinct variable groups:   𝑄,𝑖,𝑣   𝑖,𝐹,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑖)

Proof of Theorem seqomlem2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8435 . . . . . . 7 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω
2 seqomlem.a . . . . . . . . 9 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
32reseq1i 5978 . . . . . . . 8 (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)
43fneq1i 6647 . . . . . . 7 ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω)
51, 4mpbir 230 . . . . . 6 (𝑄 ↾ ω) Fn ω
6 fvres 6911 . . . . . . . . 9 (𝑏 ∈ ω → ((𝑄 ↾ ω)‘𝑏) = (𝑄𝑏))
72seqomlem1 8450 . . . . . . . . 9 (𝑏 ∈ ω → (𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩)
86, 7eqtrd 2773 . . . . . . . 8 (𝑏 ∈ ω → ((𝑄 ↾ ω)‘𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩)
9 fvex 6905 . . . . . . . . 9 (2nd ‘(𝑄𝑏)) ∈ V
10 opelxpi 5714 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (2nd ‘(𝑄𝑏)) ∈ V) → ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ ∈ (ω × V))
119, 10mpan2 690 . . . . . . . 8 (𝑏 ∈ ω → ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ ∈ (ω × V))
128, 11eqeltrd 2834 . . . . . . 7 (𝑏 ∈ ω → ((𝑄 ↾ ω)‘𝑏) ∈ (ω × V))
1312rgen 3064 . . . . . 6 𝑏 ∈ ω ((𝑄 ↾ ω)‘𝑏) ∈ (ω × V)
14 ffnfv 7118 . . . . . 6 ((𝑄 ↾ ω):ω⟶(ω × V) ↔ ((𝑄 ↾ ω) Fn ω ∧ ∀𝑏 ∈ ω ((𝑄 ↾ ω)‘𝑏) ∈ (ω × V)))
155, 13, 14mpbir2an 710 . . . . 5 (𝑄 ↾ ω):ω⟶(ω × V)
16 frn 6725 . . . . 5 ((𝑄 ↾ ω):ω⟶(ω × V) → ran (𝑄 ↾ ω) ⊆ (ω × V))
1715, 16ax-mp 5 . . . 4 ran (𝑄 ↾ ω) ⊆ (ω × V)
18 df-br 5150 . . . . . . . . . 10 (𝑎ran (𝑄 ↾ ω)𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ ran (𝑄 ↾ ω))
19 fvelrnb 6953 . . . . . . . . . . 11 ((𝑄 ↾ ω) Fn ω → (⟨𝑎, 𝑏⟩ ∈ ran (𝑄 ↾ ω) ↔ ∃𝑐 ∈ ω ((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩))
205, 19ax-mp 5 . . . . . . . . . 10 (⟨𝑎, 𝑏⟩ ∈ ran (𝑄 ↾ ω) ↔ ∃𝑐 ∈ ω ((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩)
21 fvres 6911 . . . . . . . . . . . 12 (𝑐 ∈ ω → ((𝑄 ↾ ω)‘𝑐) = (𝑄𝑐))
2221eqeq1d 2735 . . . . . . . . . . 11 (𝑐 ∈ ω → (((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩ ↔ (𝑄𝑐) = ⟨𝑎, 𝑏⟩))
2322rexbiia 3093 . . . . . . . . . 10 (∃𝑐 ∈ ω ((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩ ↔ ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩)
2418, 20, 233bitri 297 . . . . . . . . 9 (𝑎ran (𝑄 ↾ ω)𝑏 ↔ ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩)
252seqomlem1 8450 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ω → (𝑄𝑐) = ⟨𝑐, (2nd ‘(𝑄𝑐))⟩)
2625adantl 483 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → (𝑄𝑐) = ⟨𝑐, (2nd ‘(𝑄𝑐))⟩)
2726eqeq1d 2735 . . . . . . . . . . . . . 14 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ ⟨𝑐, (2nd ‘(𝑄𝑐))⟩ = ⟨𝑎, 𝑏⟩))
28 vex 3479 . . . . . . . . . . . . . . 15 𝑐 ∈ V
29 fvex 6905 . . . . . . . . . . . . . . 15 (2nd ‘(𝑄𝑐)) ∈ V
3028, 29opth1 5476 . . . . . . . . . . . . . 14 (⟨𝑐, (2nd ‘(𝑄𝑐))⟩ = ⟨𝑎, 𝑏⟩ → 𝑐 = 𝑎)
3127, 30syl6bi 253 . . . . . . . . . . . . 13 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → 𝑐 = 𝑎))
32 fveqeq2 6901 . . . . . . . . . . . . . 14 (𝑐 = 𝑎 → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ (𝑄𝑎) = ⟨𝑎, 𝑏⟩))
3332biimpd 228 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → (𝑄𝑎) = ⟨𝑎, 𝑏⟩))
3431, 33syli 39 . . . . . . . . . . . 12 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → (𝑄𝑎) = ⟨𝑎, 𝑏⟩))
35 fveq2 6892 . . . . . . . . . . . . 13 ((𝑄𝑎) = ⟨𝑎, 𝑏⟩ → (2nd ‘(𝑄𝑎)) = (2nd ‘⟨𝑎, 𝑏⟩))
36 vex 3479 . . . . . . . . . . . . . 14 𝑎 ∈ V
37 vex 3479 . . . . . . . . . . . . . 14 𝑏 ∈ V
3836, 37op2nd 7984 . . . . . . . . . . . . 13 (2nd ‘⟨𝑎, 𝑏⟩) = 𝑏
3935, 38eqtr2di 2790 . . . . . . . . . . . 12 ((𝑄𝑎) = ⟨𝑎, 𝑏⟩ → 𝑏 = (2nd ‘(𝑄𝑎)))
4034, 39syl6 35 . . . . . . . . . . 11 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → 𝑏 = (2nd ‘(𝑄𝑎))))
4140rexlimdva 3156 . . . . . . . . . 10 (𝑎 ∈ ω → (∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩ → 𝑏 = (2nd ‘(𝑄𝑎))))
422seqomlem1 8450 . . . . . . . . . . . 12 (𝑎 ∈ ω → (𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
43 fveqeq2 6901 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → ((𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩))
4443rspcev 3613 . . . . . . . . . . . 12 ((𝑎 ∈ ω ∧ (𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩) → ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
4542, 44mpdan 686 . . . . . . . . . . 11 (𝑎 ∈ ω → ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
46 opeq2 4875 . . . . . . . . . . . . 13 (𝑏 = (2nd ‘(𝑄𝑎)) → ⟨𝑎, 𝑏⟩ = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
4746eqeq2d 2744 . . . . . . . . . . . 12 (𝑏 = (2nd ‘(𝑄𝑎)) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩))
4847rexbidv 3179 . . . . . . . . . . 11 (𝑏 = (2nd ‘(𝑄𝑎)) → (∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩))
4945, 48syl5ibrcom 246 . . . . . . . . . 10 (𝑎 ∈ ω → (𝑏 = (2nd ‘(𝑄𝑎)) → ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩))
5041, 49impbid 211 . . . . . . . . 9 (𝑎 ∈ ω → (∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ 𝑏 = (2nd ‘(𝑄𝑎))))
5124, 50bitrid 283 . . . . . . . 8 (𝑎 ∈ ω → (𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎))))
5251alrimiv 1931 . . . . . . 7 (𝑎 ∈ ω → ∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎))))
53 fvex 6905 . . . . . . . 8 (2nd ‘(𝑄𝑎)) ∈ V
54 eqeq2 2745 . . . . . . . . . 10 (𝑐 = (2nd ‘(𝑄𝑎)) → (𝑏 = 𝑐𝑏 = (2nd ‘(𝑄𝑎))))
5554bibi2d 343 . . . . . . . . 9 (𝑐 = (2nd ‘(𝑄𝑎)) → ((𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐) ↔ (𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎)))))
5655albidv 1924 . . . . . . . 8 (𝑐 = (2nd ‘(𝑄𝑎)) → (∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐) ↔ ∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎)))))
5753, 56spcev 3597 . . . . . . 7 (∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎))) → ∃𝑐𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐))
5852, 57syl 17 . . . . . 6 (𝑎 ∈ ω → ∃𝑐𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐))
59 eu6 2569 . . . . . 6 (∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏 ↔ ∃𝑐𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐))
6058, 59sylibr 233 . . . . 5 (𝑎 ∈ ω → ∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏)
6160rgen 3064 . . . 4 𝑎 ∈ ω ∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏
62 dff3 7102 . . . 4 (ran (𝑄 ↾ ω):ω⟶V ↔ (ran (𝑄 ↾ ω) ⊆ (ω × V) ∧ ∀𝑎 ∈ ω ∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏))
6317, 61, 62mpbir2an 710 . . 3 ran (𝑄 ↾ ω):ω⟶V
64 df-ima 5690 . . . 4 (𝑄 “ ω) = ran (𝑄 ↾ ω)
6564feq1i 6709 . . 3 ((𝑄 “ ω):ω⟶V ↔ ran (𝑄 ↾ ω):ω⟶V)
6663, 65mpbir 230 . 2 (𝑄 “ ω):ω⟶V
67 dffn2 6720 . 2 ((𝑄 “ ω) Fn ω ↔ (𝑄 “ ω):ω⟶V)
6866, 67mpbir 230 1 (𝑄 “ ω) Fn ω
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wal 1540   = wceq 1542  wex 1782  wcel 2107  ∃!weu 2563  wral 3062  wrex 3071  Vcvv 3475  wss 3949  c0 4323  cop 4635   class class class wbr 5149   I cid 5574   × cxp 5675  ran crn 5678  cres 5679  cima 5680  suc csuc 6367   Fn wfn 6539  wf 6540  cfv 6544  (class class class)co 7409  cmpo 7411  ωcom 7855  2nd c2nd 7974  reccrdg 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410
This theorem is referenced by:  seqomlem3  8452  seqomlem4  8453  fnseqom  8455
  Copyright terms: Public domain W3C validator