MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem2 Structured version   Visualization version   GIF version

Theorem seqomlem2 8447
Description: Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
Hypothesis
Ref Expression
seqomlem.a 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
Assertion
Ref Expression
seqomlem2 (𝑄 “ ω) Fn ω
Distinct variable groups:   𝑄,𝑖,𝑣   𝑖,𝐹,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑖)

Proof of Theorem seqomlem2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8431 . . . . . . 7 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω
2 seqomlem.a . . . . . . . . 9 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
32reseq1i 5968 . . . . . . . 8 (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)
43fneq1i 6637 . . . . . . 7 ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω)
51, 4mpbir 230 . . . . . 6 (𝑄 ↾ ω) Fn ω
6 fvres 6901 . . . . . . . . 9 (𝑏 ∈ ω → ((𝑄 ↾ ω)‘𝑏) = (𝑄𝑏))
72seqomlem1 8446 . . . . . . . . 9 (𝑏 ∈ ω → (𝑄𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩)
86, 7eqtrd 2764 . . . . . . . 8 (𝑏 ∈ ω → ((𝑄 ↾ ω)‘𝑏) = ⟨𝑏, (2nd ‘(𝑄𝑏))⟩)
9 fvex 6895 . . . . . . . . 9 (2nd ‘(𝑄𝑏)) ∈ V
10 opelxpi 5704 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (2nd ‘(𝑄𝑏)) ∈ V) → ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ ∈ (ω × V))
119, 10mpan2 688 . . . . . . . 8 (𝑏 ∈ ω → ⟨𝑏, (2nd ‘(𝑄𝑏))⟩ ∈ (ω × V))
128, 11eqeltrd 2825 . . . . . . 7 (𝑏 ∈ ω → ((𝑄 ↾ ω)‘𝑏) ∈ (ω × V))
1312rgen 3055 . . . . . 6 𝑏 ∈ ω ((𝑄 ↾ ω)‘𝑏) ∈ (ω × V)
14 ffnfv 7111 . . . . . 6 ((𝑄 ↾ ω):ω⟶(ω × V) ↔ ((𝑄 ↾ ω) Fn ω ∧ ∀𝑏 ∈ ω ((𝑄 ↾ ω)‘𝑏) ∈ (ω × V)))
155, 13, 14mpbir2an 708 . . . . 5 (𝑄 ↾ ω):ω⟶(ω × V)
16 frn 6715 . . . . 5 ((𝑄 ↾ ω):ω⟶(ω × V) → ran (𝑄 ↾ ω) ⊆ (ω × V))
1715, 16ax-mp 5 . . . 4 ran (𝑄 ↾ ω) ⊆ (ω × V)
18 df-br 5140 . . . . . . . . . 10 (𝑎ran (𝑄 ↾ ω)𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ ran (𝑄 ↾ ω))
19 fvelrnb 6943 . . . . . . . . . . 11 ((𝑄 ↾ ω) Fn ω → (⟨𝑎, 𝑏⟩ ∈ ran (𝑄 ↾ ω) ↔ ∃𝑐 ∈ ω ((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩))
205, 19ax-mp 5 . . . . . . . . . 10 (⟨𝑎, 𝑏⟩ ∈ ran (𝑄 ↾ ω) ↔ ∃𝑐 ∈ ω ((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩)
21 fvres 6901 . . . . . . . . . . . 12 (𝑐 ∈ ω → ((𝑄 ↾ ω)‘𝑐) = (𝑄𝑐))
2221eqeq1d 2726 . . . . . . . . . . 11 (𝑐 ∈ ω → (((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩ ↔ (𝑄𝑐) = ⟨𝑎, 𝑏⟩))
2322rexbiia 3084 . . . . . . . . . 10 (∃𝑐 ∈ ω ((𝑄 ↾ ω)‘𝑐) = ⟨𝑎, 𝑏⟩ ↔ ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩)
2418, 20, 233bitri 297 . . . . . . . . 9 (𝑎ran (𝑄 ↾ ω)𝑏 ↔ ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩)
252seqomlem1 8446 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ω → (𝑄𝑐) = ⟨𝑐, (2nd ‘(𝑄𝑐))⟩)
2625adantl 481 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → (𝑄𝑐) = ⟨𝑐, (2nd ‘(𝑄𝑐))⟩)
2726eqeq1d 2726 . . . . . . . . . . . . . 14 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ ⟨𝑐, (2nd ‘(𝑄𝑐))⟩ = ⟨𝑎, 𝑏⟩))
28 vex 3470 . . . . . . . . . . . . . . 15 𝑐 ∈ V
29 fvex 6895 . . . . . . . . . . . . . . 15 (2nd ‘(𝑄𝑐)) ∈ V
3028, 29opth1 5466 . . . . . . . . . . . . . 14 (⟨𝑐, (2nd ‘(𝑄𝑐))⟩ = ⟨𝑎, 𝑏⟩ → 𝑐 = 𝑎)
3127, 30biimtrdi 252 . . . . . . . . . . . . 13 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → 𝑐 = 𝑎))
32 fveqeq2 6891 . . . . . . . . . . . . . 14 (𝑐 = 𝑎 → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ (𝑄𝑎) = ⟨𝑎, 𝑏⟩))
3332biimpd 228 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → (𝑄𝑎) = ⟨𝑎, 𝑏⟩))
3431, 33syli 39 . . . . . . . . . . . 12 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → (𝑄𝑎) = ⟨𝑎, 𝑏⟩))
35 fveq2 6882 . . . . . . . . . . . . 13 ((𝑄𝑎) = ⟨𝑎, 𝑏⟩ → (2nd ‘(𝑄𝑎)) = (2nd ‘⟨𝑎, 𝑏⟩))
36 vex 3470 . . . . . . . . . . . . . 14 𝑎 ∈ V
37 vex 3470 . . . . . . . . . . . . . 14 𝑏 ∈ V
3836, 37op2nd 7978 . . . . . . . . . . . . 13 (2nd ‘⟨𝑎, 𝑏⟩) = 𝑏
3935, 38eqtr2di 2781 . . . . . . . . . . . 12 ((𝑄𝑎) = ⟨𝑎, 𝑏⟩ → 𝑏 = (2nd ‘(𝑄𝑎)))
4034, 39syl6 35 . . . . . . . . . . 11 ((𝑎 ∈ ω ∧ 𝑐 ∈ ω) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ → 𝑏 = (2nd ‘(𝑄𝑎))))
4140rexlimdva 3147 . . . . . . . . . 10 (𝑎 ∈ ω → (∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩ → 𝑏 = (2nd ‘(𝑄𝑎))))
422seqomlem1 8446 . . . . . . . . . . . 12 (𝑎 ∈ ω → (𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
43 fveqeq2 6891 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → ((𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩ ↔ (𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩))
4443rspcev 3604 . . . . . . . . . . . 12 ((𝑎 ∈ ω ∧ (𝑄𝑎) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩) → ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
4542, 44mpdan 684 . . . . . . . . . . 11 (𝑎 ∈ ω → ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
46 opeq2 4867 . . . . . . . . . . . . 13 (𝑏 = (2nd ‘(𝑄𝑎)) → ⟨𝑎, 𝑏⟩ = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩)
4746eqeq2d 2735 . . . . . . . . . . . 12 (𝑏 = (2nd ‘(𝑄𝑎)) → ((𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩))
4847rexbidv 3170 . . . . . . . . . . 11 (𝑏 = (2nd ‘(𝑄𝑎)) → (∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, (2nd ‘(𝑄𝑎))⟩))
4945, 48syl5ibrcom 246 . . . . . . . . . 10 (𝑎 ∈ ω → (𝑏 = (2nd ‘(𝑄𝑎)) → ∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩))
5041, 49impbid 211 . . . . . . . . 9 (𝑎 ∈ ω → (∃𝑐 ∈ ω (𝑄𝑐) = ⟨𝑎, 𝑏⟩ ↔ 𝑏 = (2nd ‘(𝑄𝑎))))
5124, 50bitrid 283 . . . . . . . 8 (𝑎 ∈ ω → (𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎))))
5251alrimiv 1922 . . . . . . 7 (𝑎 ∈ ω → ∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎))))
53 fvex 6895 . . . . . . . 8 (2nd ‘(𝑄𝑎)) ∈ V
54 eqeq2 2736 . . . . . . . . . 10 (𝑐 = (2nd ‘(𝑄𝑎)) → (𝑏 = 𝑐𝑏 = (2nd ‘(𝑄𝑎))))
5554bibi2d 342 . . . . . . . . 9 (𝑐 = (2nd ‘(𝑄𝑎)) → ((𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐) ↔ (𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎)))))
5655albidv 1915 . . . . . . . 8 (𝑐 = (2nd ‘(𝑄𝑎)) → (∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐) ↔ ∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎)))))
5753, 56spcev 3588 . . . . . . 7 (∀𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = (2nd ‘(𝑄𝑎))) → ∃𝑐𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐))
5852, 57syl 17 . . . . . 6 (𝑎 ∈ ω → ∃𝑐𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐))
59 eu6 2560 . . . . . 6 (∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏 ↔ ∃𝑐𝑏(𝑎ran (𝑄 ↾ ω)𝑏𝑏 = 𝑐))
6058, 59sylibr 233 . . . . 5 (𝑎 ∈ ω → ∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏)
6160rgen 3055 . . . 4 𝑎 ∈ ω ∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏
62 dff3 7092 . . . 4 (ran (𝑄 ↾ ω):ω⟶V ↔ (ran (𝑄 ↾ ω) ⊆ (ω × V) ∧ ∀𝑎 ∈ ω ∃!𝑏 𝑎ran (𝑄 ↾ ω)𝑏))
6317, 61, 62mpbir2an 708 . . 3 ran (𝑄 ↾ ω):ω⟶V
64 df-ima 5680 . . . 4 (𝑄 “ ω) = ran (𝑄 ↾ ω)
6564feq1i 6699 . . 3 ((𝑄 “ ω):ω⟶V ↔ ran (𝑄 ↾ ω):ω⟶V)
6663, 65mpbir 230 . 2 (𝑄 “ ω):ω⟶V
67 dffn2 6710 . 2 ((𝑄 “ ω) Fn ω ↔ (𝑄 “ ω):ω⟶V)
6866, 67mpbir 230 1 (𝑄 “ ω) Fn ω
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1531   = wceq 1533  wex 1773  wcel 2098  ∃!weu 2554  wral 3053  wrex 3062  Vcvv 3466  wss 3941  c0 4315  cop 4627   class class class wbr 5139   I cid 5564   × cxp 5665  ran crn 5668  cres 5669  cima 5670  suc csuc 6357   Fn wfn 6529  wf 6530  cfv 6534  (class class class)co 7402  cmpo 7404  ωcom 7849  2nd c2nd 7968  reccrdg 8405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406
This theorem is referenced by:  seqomlem3  8448  seqomlem4  8449  fnseqom  8451
  Copyright terms: Public domain W3C validator