![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fodomnum | Structured version Visualization version GIF version |
Description: A version of fodom 10560 that doesn't require the Axiom of Choice ax-ac 10496. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fodomnum | ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | focdmex 7978 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) | |
2 | 1 | com12 32 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ dom card → 𝐵 ∈ V)) |
3 | numacn 10086 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 ∈ dom card → 𝐴 ∈ AC 𝐵)) | |
4 | 2, 3 | syli 39 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ dom card → 𝐴 ∈ AC 𝐵)) |
5 | 4 | com12 32 | . 2 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐴 ∈ AC 𝐵)) |
6 | fodomacn 10093 | . 2 ⊢ (𝐴 ∈ AC 𝐵 → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | |
7 | 5, 6 | syli 39 | 1 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3477 class class class wbr 5147 dom cdm 5688 –onto→wfo 6560 ≼ cdom 8981 cardccrd 9972 AC wacn 9975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-card 9976 df-acn 9979 |
This theorem is referenced by: fonum 10095 fodomfi2 10097 infpwfien 10099 inffien 10100 wdomnumr 10101 iunfictbso 10151 infmap2 10254 fictb 10281 cfflb 10296 cfslb2n 10305 fodomg 10559 rankcf 10814 tskuni 10820 tskurn 10826 znnen 16244 qnnen 16245 cygctb 19924 1stcrestlem 23475 2ndcctbss 23478 2ndcomap 23481 2ndcsep 23482 tx1stc 23673 tx2ndc 23674 met1stc 24549 met2ndci 24550 re2ndc 24836 uniiccdif 25626 dyadmbl 25648 opnmblALT 25651 mbfimaopnlem 25703 aannenlem3 26386 rn1st 45218 |
Copyright terms: Public domain | W3C validator |