MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomnum Structured version   Visualization version   GIF version

Theorem fodomnum 10126
Description: A version of fodom 10592 that doesn't require the Axiom of Choice ax-ac 10528. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fodomnum (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐵𝐴))

Proof of Theorem fodomnum
StepHypRef Expression
1 focdmex 7996 . . . . 5 (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐵 ∈ V))
21com12 32 . . . 4 (𝐹:𝐴onto𝐵 → (𝐴 ∈ dom card → 𝐵 ∈ V))
3 numacn 10118 . . . 4 (𝐵 ∈ V → (𝐴 ∈ dom card → 𝐴AC 𝐵))
42, 3syli 39 . . 3 (𝐹:𝐴onto𝐵 → (𝐴 ∈ dom card → 𝐴AC 𝐵))
54com12 32 . 2 (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐴AC 𝐵))
6 fodomacn 10125 . 2 (𝐴AC 𝐵 → (𝐹:𝐴onto𝐵𝐵𝐴))
75, 6syli 39 1 (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488   class class class wbr 5166  dom cdm 5700  ontowfo 6571  cdom 9001  cardccrd 10004  AC wacn 10007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-card 10008  df-acn 10011
This theorem is referenced by:  fonum  10127  fodomfi2  10129  infpwfien  10131  inffien  10132  wdomnumr  10133  iunfictbso  10183  infmap2  10286  fictb  10313  cfflb  10328  cfslb2n  10337  fodomg  10591  rankcf  10846  tskuni  10852  tskurn  10858  znnen  16260  qnnen  16261  cygctb  19934  1stcrestlem  23481  2ndcctbss  23484  2ndcomap  23487  2ndcsep  23488  tx1stc  23679  tx2ndc  23680  met1stc  24555  met2ndci  24556  re2ndc  24842  uniiccdif  25632  dyadmbl  25654  opnmblALT  25657  mbfimaopnlem  25709  aannenlem3  26390  rn1st  45183
  Copyright terms: Public domain W3C validator