MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomnum Structured version   Visualization version   GIF version

Theorem fodomnum 10082
Description: A version of fodom 10548 that doesn't require the Axiom of Choice ax-ac 10484. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fodomnum (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐵𝐴))

Proof of Theorem fodomnum
StepHypRef Expression
1 focdmex 7960 . . . . 5 (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐵 ∈ V))
21com12 32 . . . 4 (𝐹:𝐴onto𝐵 → (𝐴 ∈ dom card → 𝐵 ∈ V))
3 numacn 10074 . . . 4 (𝐵 ∈ V → (𝐴 ∈ dom card → 𝐴AC 𝐵))
42, 3syli 39 . . 3 (𝐹:𝐴onto𝐵 → (𝐴 ∈ dom card → 𝐴AC 𝐵))
54com12 32 . 2 (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐴AC 𝐵))
6 fodomacn 10081 . 2 (𝐴AC 𝐵 → (𝐹:𝐴onto𝐵𝐵𝐴))
75, 6syli 39 1 (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Vcvv 3461   class class class wbr 5149  dom cdm 5678  ontowfo 6547  cdom 8962  cardccrd 9960  AC wacn 9963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-card 9964  df-acn 9967
This theorem is referenced by:  fonum  10083  fodomfi2  10085  infpwfien  10087  inffien  10088  wdomnumr  10089  iunfictbso  10139  infmap2  10243  fictb  10270  cfflb  10284  cfslb2n  10293  fodomg  10547  rankcf  10802  tskuni  10808  tskurn  10814  znnen  16192  qnnen  16193  cygctb  19859  1stcrestlem  23400  2ndcctbss  23403  2ndcomap  23406  2ndcsep  23407  tx1stc  23598  tx2ndc  23599  met1stc  24474  met2ndci  24475  re2ndc  24761  uniiccdif  25551  dyadmbl  25573  opnmblALT  25576  mbfimaopnlem  25628  aannenlem3  26310  rn1st  44785
  Copyright terms: Public domain W3C validator