MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomnum Structured version   Visualization version   GIF version

Theorem fodomnum 10052
Description: A version of fodom 10518 that doesn't require the Axiom of Choice ax-ac 10454. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fodomnum (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐵𝐴))

Proof of Theorem fodomnum
StepHypRef Expression
1 focdmex 7942 . . . . 5 (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐵 ∈ V))
21com12 32 . . . 4 (𝐹:𝐴onto𝐵 → (𝐴 ∈ dom card → 𝐵 ∈ V))
3 numacn 10044 . . . 4 (𝐵 ∈ V → (𝐴 ∈ dom card → 𝐴AC 𝐵))
42, 3syli 39 . . 3 (𝐹:𝐴onto𝐵 → (𝐴 ∈ dom card → 𝐴AC 𝐵))
54com12 32 . 2 (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐴AC 𝐵))
6 fodomacn 10051 . 2 (𝐴AC 𝐵 → (𝐹:𝐴onto𝐵𝐵𝐴))
75, 6syli 39 1 (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3475   class class class wbr 5149  dom cdm 5677  ontowfo 6542  cdom 8937  cardccrd 9930  AC wacn 9933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-card 9934  df-acn 9937
This theorem is referenced by:  fonum  10053  fodomfi2  10055  infpwfien  10057  inffien  10058  wdomnumr  10059  iunfictbso  10109  infmap2  10213  fictb  10240  cfflb  10254  cfslb2n  10263  fodomg  10517  rankcf  10772  tskuni  10778  tskurn  10784  znnen  16155  qnnen  16156  cygctb  19760  1stcrestlem  22956  2ndcctbss  22959  2ndcomap  22962  2ndcsep  22963  tx1stc  23154  tx2ndc  23155  met1stc  24030  met2ndci  24031  re2ndc  24317  uniiccdif  25095  dyadmbl  25117  opnmblALT  25120  mbfimaopnlem  25172  aannenlem3  25843  rn1st  43978
  Copyright terms: Public domain W3C validator