MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomnum Structured version   Visualization version   GIF version

Theorem fodomnum 9957
Description: A version of fodom 10423 that doesn't require the Axiom of Choice ax-ac 10359. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fodomnum (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐵𝐴))

Proof of Theorem fodomnum
StepHypRef Expression
1 focdmex 7896 . . . . 5 (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐵 ∈ V))
21com12 32 . . . 4 (𝐹:𝐴onto𝐵 → (𝐴 ∈ dom card → 𝐵 ∈ V))
3 numacn 9949 . . . 4 (𝐵 ∈ V → (𝐴 ∈ dom card → 𝐴AC 𝐵))
42, 3syli 39 . . 3 (𝐹:𝐴onto𝐵 → (𝐴 ∈ dom card → 𝐴AC 𝐵))
54com12 32 . 2 (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐴AC 𝐵))
6 fodomacn 9956 . 2 (𝐴AC 𝐵 → (𝐹:𝐴onto𝐵𝐵𝐴))
75, 6syli 39 1 (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Vcvv 3437   class class class wbr 5095  dom cdm 5621  ontowfo 6486  cdom 8875  cardccrd 9837  AC wacn 9840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-card 9841  df-acn 9844
This theorem is referenced by:  fonum  9958  fodomfi2  9960  infpwfien  9962  inffien  9963  wdomnumr  9964  iunfictbso  10014  infmap2  10117  fictb  10144  cfflb  10159  cfslb2n  10168  fodomg  10422  rankcf  10677  tskuni  10683  tskurn  10689  znnen  16125  qnnen  16126  cygctb  19808  1stcrestlem  23370  2ndcctbss  23373  2ndcomap  23376  2ndcsep  23377  tx1stc  23568  tx2ndc  23569  met1stc  24439  met2ndci  24440  re2ndc  24719  uniiccdif  25509  dyadmbl  25531  opnmblALT  25534  mbfimaopnlem  25586  aannenlem3  26268  rn1st  45397
  Copyright terms: Public domain W3C validator