| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fodomnum | Structured version Visualization version GIF version | ||
| Description: A version of fodom 10537 that doesn't require the Axiom of Choice ax-ac 10473. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fodomnum | ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | focdmex 7954 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) | |
| 2 | 1 | com12 32 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ dom card → 𝐵 ∈ V)) |
| 3 | numacn 10063 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 ∈ dom card → 𝐴 ∈ AC 𝐵)) | |
| 4 | 2, 3 | syli 39 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ dom card → 𝐴 ∈ AC 𝐵)) |
| 5 | 4 | com12 32 | . 2 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐴 ∈ AC 𝐵)) |
| 6 | fodomacn 10070 | . 2 ⊢ (𝐴 ∈ AC 𝐵 → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | |
| 7 | 5, 6 | syli 39 | 1 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 dom cdm 5654 –onto→wfo 6529 ≼ cdom 8957 cardccrd 9949 AC wacn 9952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-card 9953 df-acn 9956 |
| This theorem is referenced by: fonum 10072 fodomfi2 10074 infpwfien 10076 inffien 10077 wdomnumr 10078 iunfictbso 10128 infmap2 10231 fictb 10258 cfflb 10273 cfslb2n 10282 fodomg 10536 rankcf 10791 tskuni 10797 tskurn 10803 znnen 16230 qnnen 16231 cygctb 19873 1stcrestlem 23390 2ndcctbss 23393 2ndcomap 23396 2ndcsep 23397 tx1stc 23588 tx2ndc 23589 met1stc 24460 met2ndci 24461 re2ndc 24740 uniiccdif 25531 dyadmbl 25553 opnmblALT 25556 mbfimaopnlem 25608 aannenlem3 26290 rn1st 45297 |
| Copyright terms: Public domain | W3C validator |