| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fodomnum | Structured version Visualization version GIF version | ||
| Description: A version of fodom 10483 that doesn't require the Axiom of Choice ax-ac 10419. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fodomnum | ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | focdmex 7937 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) | |
| 2 | 1 | com12 32 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ dom card → 𝐵 ∈ V)) |
| 3 | numacn 10009 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 ∈ dom card → 𝐴 ∈ AC 𝐵)) | |
| 4 | 2, 3 | syli 39 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ dom card → 𝐴 ∈ AC 𝐵)) |
| 5 | 4 | com12 32 | . 2 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐴 ∈ AC 𝐵)) |
| 6 | fodomacn 10016 | . 2 ⊢ (𝐴 ∈ AC 𝐵 → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | |
| 7 | 5, 6 | syli 39 | 1 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 dom cdm 5641 –onto→wfo 6512 ≼ cdom 8919 cardccrd 9895 AC wacn 9898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-card 9899 df-acn 9902 |
| This theorem is referenced by: fonum 10018 fodomfi2 10020 infpwfien 10022 inffien 10023 wdomnumr 10024 iunfictbso 10074 infmap2 10177 fictb 10204 cfflb 10219 cfslb2n 10228 fodomg 10482 rankcf 10737 tskuni 10743 tskurn 10749 znnen 16187 qnnen 16188 cygctb 19829 1stcrestlem 23346 2ndcctbss 23349 2ndcomap 23352 2ndcsep 23353 tx1stc 23544 tx2ndc 23545 met1stc 24416 met2ndci 24417 re2ndc 24696 uniiccdif 25486 dyadmbl 25508 opnmblALT 25511 mbfimaopnlem 25563 aannenlem3 26245 rn1st 45274 |
| Copyright terms: Public domain | W3C validator |