| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fodomnum | Structured version Visualization version GIF version | ||
| Description: A version of fodom 10414 that doesn't require the Axiom of Choice ax-ac 10350. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fodomnum | ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | focdmex 7888 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) | |
| 2 | 1 | com12 32 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ dom card → 𝐵 ∈ V)) |
| 3 | numacn 9940 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 ∈ dom card → 𝐴 ∈ AC 𝐵)) | |
| 4 | 2, 3 | syli 39 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ dom card → 𝐴 ∈ AC 𝐵)) |
| 5 | 4 | com12 32 | . 2 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐴 ∈ AC 𝐵)) |
| 6 | fodomacn 9947 | . 2 ⊢ (𝐴 ∈ AC 𝐵 → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | |
| 7 | 5, 6 | syli 39 | 1 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 dom cdm 5616 –onto→wfo 6479 ≼ cdom 8867 cardccrd 9828 AC wacn 9831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-card 9832 df-acn 9835 |
| This theorem is referenced by: fonum 9949 fodomfi2 9951 infpwfien 9953 inffien 9954 wdomnumr 9955 iunfictbso 10005 infmap2 10108 fictb 10135 cfflb 10150 cfslb2n 10159 fodomg 10413 rankcf 10668 tskuni 10674 tskurn 10680 znnen 16121 qnnen 16122 cygctb 19805 1stcrestlem 23368 2ndcctbss 23371 2ndcomap 23374 2ndcsep 23375 tx1stc 23566 tx2ndc 23567 met1stc 24437 met2ndci 24438 re2ndc 24717 uniiccdif 25507 dyadmbl 25529 opnmblALT 25532 mbfimaopnlem 25584 aannenlem3 26266 rn1st 45316 |
| Copyright terms: Public domain | W3C validator |