![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fodomnum | Structured version Visualization version GIF version |
Description: A version of fodom 9666 that doesn't require the Axiom of Choice ax-ac 9603. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fodomnum | ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fornex 7402 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) | |
2 | 1 | com12 32 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ dom card → 𝐵 ∈ V)) |
3 | numacn 9192 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 ∈ dom card → 𝐴 ∈ AC 𝐵)) | |
4 | 2, 3 | syli 39 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ dom card → 𝐴 ∈ AC 𝐵)) |
5 | 4 | com12 32 | . 2 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐴 ∈ AC 𝐵)) |
6 | fodomacn 9199 | . 2 ⊢ (𝐴 ∈ AC 𝐵 → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | |
7 | 5, 6 | syli 39 | 1 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2164 Vcvv 3414 class class class wbr 4875 dom cdm 5346 –onto→wfo 6125 ≼ cdom 8226 cardccrd 9081 AC wacn 9084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-er 8014 df-map 8129 df-en 8229 df-dom 8230 df-card 9085 df-acn 9088 |
This theorem is referenced by: fonum 9201 fodomfi2 9203 infpwfien 9205 inffien 9206 wdomnumr 9207 iunfictbso 9257 infmap2 9362 fictb 9389 cfflb 9403 cfslb2n 9412 fodom 9666 rankcf 9921 tskuni 9927 tskurn 9933 znnen 15322 qnnen 15323 cygctb 18653 1stcrestlem 21633 2ndcctbss 21636 2ndcomap 21639 2ndcsep 21640 tx1stc 21831 tx2ndc 21832 met1stc 22703 met2ndci 22704 re2ndc 22981 uniiccdif 23751 dyadmbl 23773 opnmblALT 23776 mbfimaopnlem 23828 aannenlem3 24491 |
Copyright terms: Public domain | W3C validator |