MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1domg Structured version   Visualization version   GIF version

Theorem f1domg 8956
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1domg (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐴𝐵))

Proof of Theorem f1domg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1f 6777 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 f1dmex 7930 . . . . 5 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)
3 fex 7215 . . . . 5 ((𝐹:𝐴𝐵𝐴 ∈ V) → 𝐹 ∈ V)
41, 2, 3syl2an2r 684 . . . 4 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹 ∈ V)
54expcom 415 . . 3 (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐹 ∈ V))
6 f1eq1 6772 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
76spcegv 3586 . . 3 (𝐹 ∈ V → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
85, 7syli 39 . 2 (𝐵𝐶 → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
9 brdomg 8940 . 2 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
108, 9sylibrd 259 1 (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782  wcel 2107  Vcvv 3475   class class class wbr 5144  wf 6531  1-1wf1 6532  cdom 8925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pr 5423  ax-un 7712
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-dom 8929
This theorem is referenced by:  f1dom  8958  dom2d  8977  fseqen  10009  infpssrlem5  10289  hashf1  14405  vdwlem12  16912  2ndcdisj  22929  ovolicc2lem4  25006  basellem4  26555  usgriedgleord  28452  uspgredgleord  28456
  Copyright terms: Public domain W3C validator