| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1domg | Structured version Visualization version GIF version | ||
| Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| f1domg | ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6804 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | f1dmex 7981 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | |
| 3 | fex 7246 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ V) → 𝐹 ∈ V) | |
| 4 | 1, 2, 3 | syl2an2r 685 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐹 ∈ V) |
| 5 | 4 | expcom 413 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐹 ∈ V)) |
| 6 | f1eq1 6799 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1→𝐵)) | |
| 7 | 6 | spcegv 3597 | . . 3 ⊢ (𝐹 ∈ V → (𝐹:𝐴–1-1→𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| 8 | 5, 7 | syli 39 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| 9 | brdomg 8997 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
| 10 | 8, 9 | sylibrd 259 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2108 Vcvv 3480 class class class wbr 5143 ⟶wf 6557 –1-1→wf1 6558 ≼ cdom 8983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-dom 8987 |
| This theorem is referenced by: f1dom 9014 dom2d 9033 fseqen 10067 infpssrlem5 10347 hashf1 14496 vdwlem12 17030 2ndcdisj 23464 ovolicc2lem4 25555 basellem4 27127 usgriedgleord 29245 uspgredgleord 29249 |
| Copyright terms: Public domain | W3C validator |