![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1domg | Structured version Visualization version GIF version |
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.) |
Ref | Expression |
---|---|
f1domg | ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6793 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | f1dmex 7960 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | |
3 | fex 7238 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ V) → 𝐹 ∈ V) | |
4 | 1, 2, 3 | syl2an2r 684 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐹 ∈ V) |
5 | 4 | expcom 413 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐹 ∈ V)) |
6 | f1eq1 6788 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1→𝐵)) | |
7 | 6 | spcegv 3584 | . . 3 ⊢ (𝐹 ∈ V → (𝐹:𝐴–1-1→𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
8 | 5, 7 | syli 39 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
9 | brdomg 8977 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
10 | 8, 9 | sylibrd 259 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1774 ∈ wcel 2099 Vcvv 3471 class class class wbr 5148 ⟶wf 6544 –1-1→wf1 6545 ≼ cdom 8962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-dom 8966 |
This theorem is referenced by: f1dom 8995 dom2d 9014 fseqen 10051 infpssrlem5 10331 hashf1 14451 vdwlem12 16961 2ndcdisj 23373 ovolicc2lem4 25462 basellem4 27029 usgriedgleord 29054 uspgredgleord 29058 |
Copyright terms: Public domain | W3C validator |