MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1domg Structured version   Visualization version   GIF version

Theorem f1domg 8648
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1domg (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐴𝐵))

Proof of Theorem f1domg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1f 6615 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 f1dmex 7730 . . . . 5 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)
3 fex 7042 . . . . 5 ((𝐹:𝐴𝐵𝐴 ∈ V) → 𝐹 ∈ V)
41, 2, 3syl2an2r 685 . . . 4 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹 ∈ V)
54expcom 417 . . 3 (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐹 ∈ V))
6 f1eq1 6610 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
76spcegv 3512 . . 3 (𝐹 ∈ V → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
85, 7syli 39 . 2 (𝐵𝐶 → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
9 brdomg 8638 . 2 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
108, 9sylibrd 262 1 (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1787  wcel 2110  Vcvv 3408   class class class wbr 5053  wf 6376  1-1wf1 6377  cdom 8624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-dom 8628
This theorem is referenced by:  f1dom  8650  dom2d  8669  fseqen  9641  infpssrlem5  9921  hashf1  14023  vdwlem12  16545  2ndcdisj  22353  ovolicc2lem4  24417  basellem4  25966  usgriedgleord  27316  uspgredgleord  27320
  Copyright terms: Public domain W3C validator