Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1domg | Structured version Visualization version GIF version |
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.) |
Ref | Expression |
---|---|
f1domg | ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6654 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | f1dmex 7773 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | |
3 | fex 7084 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ V) → 𝐹 ∈ V) | |
4 | 1, 2, 3 | syl2an2r 681 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐹 ∈ V) |
5 | 4 | expcom 413 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐹 ∈ V)) |
6 | f1eq1 6649 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1→𝐵)) | |
7 | 6 | spcegv 3526 | . . 3 ⊢ (𝐹 ∈ V → (𝐹:𝐴–1-1→𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
8 | 5, 7 | syli 39 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
9 | brdomg 8703 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
10 | 8, 9 | sylibrd 258 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ⟶wf 6414 –1-1→wf1 6415 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-dom 8693 |
This theorem is referenced by: f1dom 8717 dom2d 8736 fseqen 9714 infpssrlem5 9994 hashf1 14099 vdwlem12 16621 2ndcdisj 22515 ovolicc2lem4 24589 basellem4 26138 usgriedgleord 27498 uspgredgleord 27502 |
Copyright terms: Public domain | W3C validator |