MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1domg Structured version   Visualization version   GIF version

Theorem f1domg 9010
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1domg (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐴𝐵))

Proof of Theorem f1domg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1f 6804 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 f1dmex 7979 . . . . 5 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)
3 fex 7245 . . . . 5 ((𝐹:𝐴𝐵𝐴 ∈ V) → 𝐹 ∈ V)
41, 2, 3syl2an2r 685 . . . 4 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹 ∈ V)
54expcom 413 . . 3 (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐹 ∈ V))
6 f1eq1 6799 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
76spcegv 3596 . . 3 (𝐹 ∈ V → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
85, 7syli 39 . 2 (𝐵𝐶 → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
9 brdomg 8995 . 2 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
108, 9sylibrd 259 1 (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1775  wcel 2105  Vcvv 3477   class class class wbr 5147  wf 6558  1-1wf1 6559  cdom 8981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-dom 8985
This theorem is referenced by:  f1dom  9012  dom2d  9031  fseqen  10064  infpssrlem5  10344  hashf1  14492  vdwlem12  17025  2ndcdisj  23479  ovolicc2lem4  25568  basellem4  27141  usgriedgleord  29259  uspgredgleord  29263
  Copyright terms: Public domain W3C validator