Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elghomlem2OLD Structured version   Visualization version   GIF version

Theorem elghomlem2OLD 36044
Description: Obsolete as of 15-Mar-2020. Lemma for elghomOLD 36045. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
elghomlem1OLD.1 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}
Assertion
Ref Expression
elghomlem2OLD ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐹   𝑓,𝐺,𝑥,𝑦   𝑓,𝐻,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑓)

Proof of Theorem elghomlem2OLD
StepHypRef Expression
1 elghomlem1OLD.1 . . . 4 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}
21elghomlem1OLD 36043 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆)
32eleq2d 2824 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ 𝐹𝑆))
4 elex 3450 . . . . 5 (𝐹𝑆𝐹 ∈ V)
5 feq1 6581 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓:ran 𝐺⟶ran 𝐻𝐹:ran 𝐺⟶ran 𝐻))
6 fveq1 6773 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
7 fveq1 6773 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
86, 7oveq12d 7293 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑓𝑥)𝐻(𝑓𝑦)) = ((𝐹𝑥)𝐻(𝐹𝑦)))
9 fveq1 6773 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓‘(𝑥𝐺𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
108, 9eqeq12d 2754 . . . . . . . . 9 (𝑓 = 𝐹 → (((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
11102ralbidv 3129 . . . . . . . 8 (𝑓 = 𝐹 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
125, 11anbi12d 631 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
1312, 1elab2g 3611 . . . . . 6 (𝐹 ∈ V → (𝐹𝑆 ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
1413biimpd 228 . . . . 5 (𝐹 ∈ V → (𝐹𝑆 → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
154, 14mpcom 38 . . . 4 (𝐹𝑆 → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
16 rnexg 7751 . . . . . . 7 (𝐺 ∈ GrpOp → ran 𝐺 ∈ V)
17 fex 7102 . . . . . . . 8 ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ran 𝐺 ∈ V) → 𝐹 ∈ V)
1817expcom 414 . . . . . . 7 (ran 𝐺 ∈ V → (𝐹:ran 𝐺⟶ran 𝐻𝐹 ∈ V))
1916, 18syl 17 . . . . . 6 (𝐺 ∈ GrpOp → (𝐹:ran 𝐺⟶ran 𝐻𝐹 ∈ V))
2019adantrd 492 . . . . 5 (𝐺 ∈ GrpOp → ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))) → 𝐹 ∈ V))
2113biimprd 247 . . . . 5 (𝐹 ∈ V → ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))) → 𝐹𝑆))
2220, 21syli 39 . . . 4 (𝐺 ∈ GrpOp → ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))) → 𝐹𝑆))
2315, 22impbid2 225 . . 3 (𝐺 ∈ GrpOp → (𝐹𝑆 ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
2423adantr 481 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹𝑆 ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
253, 24bitrd 278 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  Vcvv 3432  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  GrpOpcgr 28851   GrpOpHom cghomOLD 36041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-ghomOLD 36042
This theorem is referenced by:  elghomOLD  36045
  Copyright terms: Public domain W3C validator