Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elghomlem2OLD Structured version   Visualization version   GIF version

Theorem elghomlem2OLD 37893
Description: Obsolete as of 15-Mar-2020. Lemma for elghomOLD 37894. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
elghomlem1OLD.1 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}
Assertion
Ref Expression
elghomlem2OLD ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐹   𝑓,𝐺,𝑥,𝑦   𝑓,𝐻,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑓)

Proof of Theorem elghomlem2OLD
StepHypRef Expression
1 elghomlem1OLD.1 . . . 4 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}
21elghomlem1OLD 37892 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆)
32eleq2d 2827 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ 𝐹𝑆))
4 elex 3501 . . . . 5 (𝐹𝑆𝐹 ∈ V)
5 feq1 6716 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓:ran 𝐺⟶ran 𝐻𝐹:ran 𝐺⟶ran 𝐻))
6 fveq1 6905 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
7 fveq1 6905 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
86, 7oveq12d 7449 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑓𝑥)𝐻(𝑓𝑦)) = ((𝐹𝑥)𝐻(𝐹𝑦)))
9 fveq1 6905 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓‘(𝑥𝐺𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
108, 9eqeq12d 2753 . . . . . . . . 9 (𝑓 = 𝐹 → (((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
11102ralbidv 3221 . . . . . . . 8 (𝑓 = 𝐹 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
125, 11anbi12d 632 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
1312, 1elab2g 3680 . . . . . 6 (𝐹 ∈ V → (𝐹𝑆 ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
1413biimpd 229 . . . . 5 (𝐹 ∈ V → (𝐹𝑆 → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
154, 14mpcom 38 . . . 4 (𝐹𝑆 → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
16 rnexg 7924 . . . . . . 7 (𝐺 ∈ GrpOp → ran 𝐺 ∈ V)
17 fex 7246 . . . . . . . 8 ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ran 𝐺 ∈ V) → 𝐹 ∈ V)
1817expcom 413 . . . . . . 7 (ran 𝐺 ∈ V → (𝐹:ran 𝐺⟶ran 𝐻𝐹 ∈ V))
1916, 18syl 17 . . . . . 6 (𝐺 ∈ GrpOp → (𝐹:ran 𝐺⟶ran 𝐻𝐹 ∈ V))
2019adantrd 491 . . . . 5 (𝐺 ∈ GrpOp → ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))) → 𝐹 ∈ V))
2113biimprd 248 . . . . 5 (𝐹 ∈ V → ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))) → 𝐹𝑆))
2220, 21syli 39 . . . 4 (𝐺 ∈ GrpOp → ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))) → 𝐹𝑆))
2315, 22impbid2 226 . . 3 (𝐺 ∈ GrpOp → (𝐹𝑆 ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
2423adantr 480 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹𝑆 ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
253, 24bitrd 279 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2714  wral 3061  Vcvv 3480  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  GrpOpcgr 30508   GrpOpHom cghomOLD 37890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-ghomOLD 37891
This theorem is referenced by:  elghomOLD  37894
  Copyright terms: Public domain W3C validator