Proof of Theorem elghomlem2OLD
Step | Hyp | Ref
| Expression |
1 | | elghomlem1OLD.1 |
. . . 4
⊢ 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} |
2 | 1 | elghomlem1OLD 36043 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆) |
3 | 2 | eleq2d 2824 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ 𝐹 ∈ 𝑆)) |
4 | | elex 3450 |
. . . . 5
⊢ (𝐹 ∈ 𝑆 → 𝐹 ∈ V) |
5 | | feq1 6581 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓:ran 𝐺⟶ran 𝐻 ↔ 𝐹:ran 𝐺⟶ran 𝐻)) |
6 | | fveq1 6773 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
7 | | fveq1 6773 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) |
8 | 6, 7 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = ((𝐹‘𝑥)𝐻(𝐹‘𝑦))) |
9 | | fveq1 6773 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥𝐺𝑦)) = (𝐹‘(𝑥𝐺𝑦))) |
10 | 8, 9 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦)))) |
11 | 10 | 2ralbidv 3129 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦)))) |
12 | 5, 11 | anbi12d 631 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦))) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
13 | 12, 1 | elab2g 3611 |
. . . . . 6
⊢ (𝐹 ∈ V → (𝐹 ∈ 𝑆 ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
14 | 13 | biimpd 228 |
. . . . 5
⊢ (𝐹 ∈ V → (𝐹 ∈ 𝑆 → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
15 | 4, 14 | mpcom 38 |
. . . 4
⊢ (𝐹 ∈ 𝑆 → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦)))) |
16 | | rnexg 7751 |
. . . . . . 7
⊢ (𝐺 ∈ GrpOp → ran 𝐺 ∈ V) |
17 | | fex 7102 |
. . . . . . . 8
⊢ ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ran 𝐺 ∈ V) → 𝐹 ∈ V) |
18 | 17 | expcom 414 |
. . . . . . 7
⊢ (ran
𝐺 ∈ V → (𝐹:ran 𝐺⟶ran 𝐻 → 𝐹 ∈ V)) |
19 | 16, 18 | syl 17 |
. . . . . 6
⊢ (𝐺 ∈ GrpOp → (𝐹:ran 𝐺⟶ran 𝐻 → 𝐹 ∈ V)) |
20 | 19 | adantrd 492 |
. . . . 5
⊢ (𝐺 ∈ GrpOp → ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))) → 𝐹 ∈ V)) |
21 | 13 | biimprd 247 |
. . . . 5
⊢ (𝐹 ∈ V → ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))) → 𝐹 ∈ 𝑆)) |
22 | 20, 21 | syli 39 |
. . . 4
⊢ (𝐺 ∈ GrpOp → ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))) → 𝐹 ∈ 𝑆)) |
23 | 15, 22 | impbid2 225 |
. . 3
⊢ (𝐺 ∈ GrpOp → (𝐹 ∈ 𝑆 ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
24 | 23 | adantr 481 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ 𝑆 ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
25 | 3, 24 | bitrd 278 |
1
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |