MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negn0 Structured version   Visualization version   GIF version

Theorem negn0 10740
Description: The image under negation of a nonempty set of reals is nonempty. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
negn0 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅)
Distinct variable group:   𝑧,𝐴

Proof of Theorem negn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4132 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 ssel 3792 . . . . . . 7 (𝐴 ⊆ ℝ → (𝑥𝐴𝑥 ∈ ℝ))
3 renegcl 10625 . . . . . . . . . 10 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
4 negeq 10554 . . . . . . . . . . . 12 (𝑧 = -𝑥 → -𝑧 = --𝑥)
54eleq1d 2870 . . . . . . . . . . 11 (𝑧 = -𝑥 → (-𝑧𝐴 ↔ --𝑥𝐴))
65elrab3 3560 . . . . . . . . . 10 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
73, 6syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
8 recn 10307 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
98negnegd 10664 . . . . . . . . . 10 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
109eleq1d 2870 . . . . . . . . 9 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
117, 10bitrd 270 . . . . . . . 8 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ 𝑥𝐴))
1211biimprd 239 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
132, 12syli 39 . . . . . 6 (𝐴 ⊆ ℝ → (𝑥𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
14 elex2 3410 . . . . . 6 (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
1513, 14syl6 35 . . . . 5 (𝐴 ⊆ ℝ → (𝑥𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
16 n0 4132 . . . . 5 ({𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ↔ ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
1715, 16syl6ibr 243 . . . 4 (𝐴 ⊆ ℝ → (𝑥𝐴 → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅))
1817exlimdv 2024 . . 3 (𝐴 ⊆ ℝ → (∃𝑥 𝑥𝐴 → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅))
191, 18syl5bi 233 . 2 (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅))
2019imp 395 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wex 1859  wcel 2156  wne 2978  {crab 3100  wss 3769  c0 4116  cr 10216  -cneg 10548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-po 5232  df-so 5233  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-er 7975  df-en 8189  df-dom 8190  df-sdom 8191  df-pnf 10357  df-mnf 10358  df-ltxr 10360  df-sub 10549  df-neg 10550
This theorem is referenced by:  fiminre  11253  supminf  11990  supminfxr  40167
  Copyright terms: Public domain W3C validator