MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negn0 Structured version   Visualization version   GIF version

Theorem negn0 11543
Description: The image under negation of a nonempty set of reals is nonempty. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
negn0 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅)
Distinct variable group:   𝑧,𝐴

Proof of Theorem negn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4303 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 ssel 3928 . . . . . . 7 (𝐴 ⊆ ℝ → (𝑥𝐴𝑥 ∈ ℝ))
3 renegcl 11421 . . . . . . . . . 10 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
4 negeq 11349 . . . . . . . . . . . 12 (𝑧 = -𝑥 → -𝑧 = --𝑥)
54eleq1d 2816 . . . . . . . . . . 11 (𝑧 = -𝑥 → (-𝑧𝐴 ↔ --𝑥𝐴))
65elrab3 3648 . . . . . . . . . 10 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
73, 6syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
8 recn 11093 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
98negnegd 11460 . . . . . . . . . 10 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
109eleq1d 2816 . . . . . . . . 9 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
117, 10bitrd 279 . . . . . . . 8 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ 𝑥𝐴))
1211biimprd 248 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
132, 12syli 39 . . . . . 6 (𝐴 ⊆ ℝ → (𝑥𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
14 elex2 2808 . . . . . 6 (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
1513, 14syl6 35 . . . . 5 (𝐴 ⊆ ℝ → (𝑥𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
16 n0 4303 . . . . 5 ({𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ↔ ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
1715, 16imbitrrdi 252 . . . 4 (𝐴 ⊆ ℝ → (𝑥𝐴 → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅))
1817exlimdv 1934 . . 3 (𝐴 ⊆ ℝ → (∃𝑥 𝑥𝐴 → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅))
191, 18biimtrid 242 . 2 (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅))
2019imp 406 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  {crab 3395  wss 3902  c0 4283  cr 11002  -cneg 11342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148  df-sub 11343  df-neg 11344
This theorem is referenced by:  supminf  12830  supminfxr  45501
  Copyright terms: Public domain W3C validator