| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negn0 | Structured version Visualization version GIF version | ||
| Description: The image under negation of a nonempty set of reals is nonempty. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| negn0 | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4303 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | ssel 3928 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → 𝑥 ∈ ℝ)) | |
| 3 | renegcl 11421 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) | |
| 4 | negeq 11349 | . . . . . . . . . . . 12 ⊢ (𝑧 = -𝑥 → -𝑧 = --𝑥) | |
| 5 | 4 | eleq1d 2816 | . . . . . . . . . . 11 ⊢ (𝑧 = -𝑥 → (-𝑧 ∈ 𝐴 ↔ --𝑥 ∈ 𝐴)) |
| 6 | 5 | elrab3 3648 | . . . . . . . . . 10 ⊢ (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ --𝑥 ∈ 𝐴)) |
| 7 | 3, 6 | syl 17 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ --𝑥 ∈ 𝐴)) |
| 8 | recn 11093 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
| 9 | 8 | negnegd 11460 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → --𝑥 = 𝑥) |
| 10 | 9 | eleq1d 2816 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → (--𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 11 | 7, 10 | bitrd 279 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ 𝑥 ∈ 𝐴)) |
| 12 | 11 | biimprd 248 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (𝑥 ∈ 𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
| 13 | 2, 12 | syli 39 | . . . . . 6 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
| 14 | elex2 2808 | . . . . . 6 ⊢ (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) | |
| 15 | 13, 14 | syl6 35 | . . . . 5 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
| 16 | n0 4303 | . . . . 5 ⊢ ({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅ ↔ ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) | |
| 17 | 15, 16 | imbitrrdi 252 | . . . 4 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅)) |
| 18 | 17 | exlimdv 1934 | . . 3 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 𝑥 ∈ 𝐴 → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅)) |
| 19 | 1, 18 | biimtrid 242 | . 2 ⊢ (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅)) |
| 20 | 19 | imp 406 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ⊆ wss 3902 ∅c0 4283 ℝcr 11002 -cneg 11342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 df-sub 11343 df-neg 11344 |
| This theorem is referenced by: supminf 12830 supminfxr 45501 |
| Copyright terms: Public domain | W3C validator |