| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negn0 | Structured version Visualization version GIF version | ||
| Description: The image under negation of a nonempty set of reals is nonempty. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| negn0 | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4302 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | ssel 3924 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → 𝑥 ∈ ℝ)) | |
| 3 | renegcl 11431 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) | |
| 4 | negeq 11359 | . . . . . . . . . . . 12 ⊢ (𝑧 = -𝑥 → -𝑧 = --𝑥) | |
| 5 | 4 | eleq1d 2818 | . . . . . . . . . . 11 ⊢ (𝑧 = -𝑥 → (-𝑧 ∈ 𝐴 ↔ --𝑥 ∈ 𝐴)) |
| 6 | 5 | elrab3 3644 | . . . . . . . . . 10 ⊢ (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ --𝑥 ∈ 𝐴)) |
| 7 | 3, 6 | syl 17 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ --𝑥 ∈ 𝐴)) |
| 8 | recn 11103 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
| 9 | 8 | negnegd 11470 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → --𝑥 = 𝑥) |
| 10 | 9 | eleq1d 2818 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → (--𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 11 | 7, 10 | bitrd 279 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ 𝑥 ∈ 𝐴)) |
| 12 | 11 | biimprd 248 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (𝑥 ∈ 𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
| 13 | 2, 12 | syli 39 | . . . . . 6 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
| 14 | elex2 2810 | . . . . . 6 ⊢ (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) | |
| 15 | 13, 14 | syl6 35 | . . . . 5 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴})) |
| 16 | n0 4302 | . . . . 5 ⊢ ({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅ ↔ ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) | |
| 17 | 15, 16 | imbitrrdi 252 | . . . 4 ⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅)) |
| 18 | 17 | exlimdv 1934 | . . 3 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 𝑥 ∈ 𝐴 → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅)) |
| 19 | 1, 18 | biimtrid 242 | . 2 ⊢ (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅)) |
| 20 | 19 | imp 406 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 {crab 3396 ⊆ wss 3898 ∅c0 4282 ℝcr 11012 -cneg 11352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-sub 11353 df-neg 11354 |
| This theorem is referenced by: supminf 12835 supminfxr 45586 |
| Copyright terms: Public domain | W3C validator |