| Step | Hyp | Ref
| Expression |
| 1 | | vex 3467 |
. . . . 5
⊢ 𝑧 ∈ V |
| 2 | 1 | elrn 5884 |
. . . 4
⊢ (𝑧 ∈ ran tpos 𝐹 ↔ ∃𝑤 𝑤tpos 𝐹𝑧) |
| 3 | | vex 3467 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
| 4 | 3, 1 | breldm 5899 |
. . . . . . . 8
⊢ (𝑤tpos 𝐹𝑧 → 𝑤 ∈ dom tpos 𝐹) |
| 5 | | dmtpos 8245 |
. . . . . . . . 9
⊢ (Rel dom
𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
| 6 | 5 | eleq2d 2819 |
. . . . . . . 8
⊢ (Rel dom
𝐹 → (𝑤 ∈ dom tpos 𝐹 ↔ 𝑤 ∈ ◡dom 𝐹)) |
| 7 | 4, 6 | imbitrid 244 |
. . . . . . 7
⊢ (Rel dom
𝐹 → (𝑤tpos 𝐹𝑧 → 𝑤 ∈ ◡dom 𝐹)) |
| 8 | | relcnv 6102 |
. . . . . . . 8
⊢ Rel ◡dom 𝐹 |
| 9 | | elrel 5788 |
. . . . . . . 8
⊢ ((Rel
◡dom 𝐹 ∧ 𝑤 ∈ ◡dom 𝐹) → ∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉) |
| 10 | 8, 9 | mpan 690 |
. . . . . . 7
⊢ (𝑤 ∈ ◡dom 𝐹 → ∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉) |
| 11 | 7, 10 | syl6 35 |
. . . . . 6
⊢ (Rel dom
𝐹 → (𝑤tpos 𝐹𝑧 → ∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉)) |
| 12 | | breq1 5126 |
. . . . . . . . 9
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑤tpos 𝐹𝑧 ↔ 〈𝑥, 𝑦〉tpos 𝐹𝑧)) |
| 13 | | brtpos 8242 |
. . . . . . . . . 10
⊢ (𝑧 ∈ V → (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) |
| 14 | 13 | elv 3468 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧) |
| 15 | 12, 14 | bitrdi 287 |
. . . . . . . 8
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑤tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) |
| 16 | | opex 5449 |
. . . . . . . . 9
⊢
〈𝑦, 𝑥〉 ∈ V |
| 17 | 16, 1 | brelrn 5933 |
. . . . . . . 8
⊢
(〈𝑦, 𝑥〉𝐹𝑧 → 𝑧 ∈ ran 𝐹) |
| 18 | 15, 17 | biimtrdi 253 |
. . . . . . 7
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑤tpos 𝐹𝑧 → 𝑧 ∈ ran 𝐹)) |
| 19 | 18 | exlimivv 1931 |
. . . . . 6
⊢
(∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉 → (𝑤tpos 𝐹𝑧 → 𝑧 ∈ ran 𝐹)) |
| 20 | 11, 19 | syli 39 |
. . . . 5
⊢ (Rel dom
𝐹 → (𝑤tpos 𝐹𝑧 → 𝑧 ∈ ran 𝐹)) |
| 21 | 20 | exlimdv 1932 |
. . . 4
⊢ (Rel dom
𝐹 → (∃𝑤 𝑤tpos 𝐹𝑧 → 𝑧 ∈ ran 𝐹)) |
| 22 | 2, 21 | biimtrid 242 |
. . 3
⊢ (Rel dom
𝐹 → (𝑧 ∈ ran tpos 𝐹 → 𝑧 ∈ ran 𝐹)) |
| 23 | 1 | elrn 5884 |
. . . 4
⊢ (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 𝑤𝐹𝑧) |
| 24 | 3, 1 | breldm 5899 |
. . . . . . 7
⊢ (𝑤𝐹𝑧 → 𝑤 ∈ dom 𝐹) |
| 25 | | elrel 5788 |
. . . . . . . 8
⊢ ((Rel dom
𝐹 ∧ 𝑤 ∈ dom 𝐹) → ∃𝑦∃𝑥 𝑤 = 〈𝑦, 𝑥〉) |
| 26 | 25 | ex 412 |
. . . . . . 7
⊢ (Rel dom
𝐹 → (𝑤 ∈ dom 𝐹 → ∃𝑦∃𝑥 𝑤 = 〈𝑦, 𝑥〉)) |
| 27 | 24, 26 | syl5 34 |
. . . . . 6
⊢ (Rel dom
𝐹 → (𝑤𝐹𝑧 → ∃𝑦∃𝑥 𝑤 = 〈𝑦, 𝑥〉)) |
| 28 | | breq1 5126 |
. . . . . . . . 9
⊢ (𝑤 = 〈𝑦, 𝑥〉 → (𝑤𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) |
| 29 | 28, 14 | bitr4di 289 |
. . . . . . . 8
⊢ (𝑤 = 〈𝑦, 𝑥〉 → (𝑤𝐹𝑧 ↔ 〈𝑥, 𝑦〉tpos 𝐹𝑧)) |
| 30 | | opex 5449 |
. . . . . . . . 9
⊢
〈𝑥, 𝑦〉 ∈ V |
| 31 | 30, 1 | brelrn 5933 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉tpos 𝐹𝑧 → 𝑧 ∈ ran tpos 𝐹) |
| 32 | 29, 31 | biimtrdi 253 |
. . . . . . 7
⊢ (𝑤 = 〈𝑦, 𝑥〉 → (𝑤𝐹𝑧 → 𝑧 ∈ ran tpos 𝐹)) |
| 33 | 32 | exlimivv 1931 |
. . . . . 6
⊢
(∃𝑦∃𝑥 𝑤 = 〈𝑦, 𝑥〉 → (𝑤𝐹𝑧 → 𝑧 ∈ ran tpos 𝐹)) |
| 34 | 27, 33 | syli 39 |
. . . . 5
⊢ (Rel dom
𝐹 → (𝑤𝐹𝑧 → 𝑧 ∈ ran tpos 𝐹)) |
| 35 | 34 | exlimdv 1932 |
. . . 4
⊢ (Rel dom
𝐹 → (∃𝑤 𝑤𝐹𝑧 → 𝑧 ∈ ran tpos 𝐹)) |
| 36 | 23, 35 | biimtrid 242 |
. . 3
⊢ (Rel dom
𝐹 → (𝑧 ∈ ran 𝐹 → 𝑧 ∈ ran tpos 𝐹)) |
| 37 | 22, 36 | impbid 212 |
. 2
⊢ (Rel dom
𝐹 → (𝑧 ∈ ran tpos 𝐹 ↔ 𝑧 ∈ ran 𝐹)) |
| 38 | 37 | eqrdv 2732 |
1
⊢ (Rel dom
𝐹 → ran tpos 𝐹 = ran 𝐹) |