MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rntpos Structured version   Visualization version   GIF version

Theorem rntpos 8251
Description: The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
rntpos (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)

Proof of Theorem rntpos
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3477 . . . . 5 𝑧 ∈ V
21elrn 5900 . . . 4 (𝑧 ∈ ran tpos 𝐹 ↔ ∃𝑤 𝑤tpos 𝐹𝑧)
3 vex 3477 . . . . . . . . 9 𝑤 ∈ V
43, 1breldm 5915 . . . . . . . 8 (𝑤tpos 𝐹𝑧𝑤 ∈ dom tpos 𝐹)
5 dmtpos 8250 . . . . . . . . 9 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
65eleq2d 2815 . . . . . . . 8 (Rel dom 𝐹 → (𝑤 ∈ dom tpos 𝐹𝑤dom 𝐹))
74, 6imbitrid 243 . . . . . . 7 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧𝑤dom 𝐹))
8 relcnv 6113 . . . . . . . 8 Rel dom 𝐹
9 elrel 5804 . . . . . . . 8 ((Rel dom 𝐹𝑤dom 𝐹) → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
108, 9mpan 688 . . . . . . 7 (𝑤dom 𝐹 → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
117, 10syl6 35 . . . . . 6 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧 → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩))
12 breq1 5155 . . . . . . . . 9 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧 ↔ ⟨𝑥, 𝑦⟩tpos 𝐹𝑧))
13 brtpos 8247 . . . . . . . . . 10 (𝑧 ∈ V → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
1413elv 3479 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧)
1512, 14bitrdi 286 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
16 opex 5470 . . . . . . . . 9 𝑦, 𝑥⟩ ∈ V
1716, 1brelrn 5948 . . . . . . . 8 (⟨𝑦, 𝑥𝐹𝑧𝑧 ∈ ran 𝐹)
1815, 17biimtrdi 252 . . . . . . 7 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
1918exlimivv 1927 . . . . . 6 (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
2011, 19syli 39 . . . . 5 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
2120exlimdv 1928 . . . 4 (Rel dom 𝐹 → (∃𝑤 𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
222, 21biimtrid 241 . . 3 (Rel dom 𝐹 → (𝑧 ∈ ran tpos 𝐹𝑧 ∈ ran 𝐹))
231elrn 5900 . . . 4 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 𝑤𝐹𝑧)
243, 1breldm 5915 . . . . . . 7 (𝑤𝐹𝑧𝑤 ∈ dom 𝐹)
25 elrel 5804 . . . . . . . 8 ((Rel dom 𝐹𝑤 ∈ dom 𝐹) → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩)
2625ex 411 . . . . . . 7 (Rel dom 𝐹 → (𝑤 ∈ dom 𝐹 → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩))
2724, 26syl5 34 . . . . . 6 (Rel dom 𝐹 → (𝑤𝐹𝑧 → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩))
28 breq1 5155 . . . . . . . . 9 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
2928, 14bitr4di 288 . . . . . . . 8 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧 ↔ ⟨𝑥, 𝑦⟩tpos 𝐹𝑧))
30 opex 5470 . . . . . . . . 9 𝑥, 𝑦⟩ ∈ V
3130, 1brelrn 5948 . . . . . . . 8 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧𝑧 ∈ ran tpos 𝐹)
3229, 31biimtrdi 252 . . . . . . 7 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3332exlimivv 1927 . . . . . 6 (∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3427, 33syli 39 . . . . 5 (Rel dom 𝐹 → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3534exlimdv 1928 . . . 4 (Rel dom 𝐹 → (∃𝑤 𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3623, 35biimtrid 241 . . 3 (Rel dom 𝐹 → (𝑧 ∈ ran 𝐹𝑧 ∈ ran tpos 𝐹))
3722, 36impbid 211 . 2 (Rel dom 𝐹 → (𝑧 ∈ ran tpos 𝐹𝑧 ∈ ran 𝐹))
3837eqrdv 2726 1 (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wex 1773  wcel 2098  Vcvv 3473  cop 4638   class class class wbr 5152  ccnv 5681  dom cdm 5682  ran crn 5683  Rel wrel 5687  tpos ctpos 8237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-fv 6561  df-tpos 8238
This theorem is referenced by:  tposfo2  8261  oppchofcl  18259  oyoncl  18269
  Copyright terms: Public domain W3C validator