MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rntpos Structured version   Visualization version   GIF version

Theorem rntpos 8220
Description: The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
rntpos (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)

Proof of Theorem rntpos
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3454 . . . . 5 𝑧 ∈ V
21elrn 5859 . . . 4 (𝑧 ∈ ran tpos 𝐹 ↔ ∃𝑤 𝑤tpos 𝐹𝑧)
3 vex 3454 . . . . . . . . 9 𝑤 ∈ V
43, 1breldm 5874 . . . . . . . 8 (𝑤tpos 𝐹𝑧𝑤 ∈ dom tpos 𝐹)
5 dmtpos 8219 . . . . . . . . 9 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
65eleq2d 2815 . . . . . . . 8 (Rel dom 𝐹 → (𝑤 ∈ dom tpos 𝐹𝑤dom 𝐹))
74, 6imbitrid 244 . . . . . . 7 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧𝑤dom 𝐹))
8 relcnv 6077 . . . . . . . 8 Rel dom 𝐹
9 elrel 5763 . . . . . . . 8 ((Rel dom 𝐹𝑤dom 𝐹) → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
108, 9mpan 690 . . . . . . 7 (𝑤dom 𝐹 → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
117, 10syl6 35 . . . . . 6 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧 → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩))
12 breq1 5112 . . . . . . . . 9 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧 ↔ ⟨𝑥, 𝑦⟩tpos 𝐹𝑧))
13 brtpos 8216 . . . . . . . . . 10 (𝑧 ∈ V → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
1413elv 3455 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧)
1512, 14bitrdi 287 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
16 opex 5426 . . . . . . . . 9 𝑦, 𝑥⟩ ∈ V
1716, 1brelrn 5908 . . . . . . . 8 (⟨𝑦, 𝑥𝐹𝑧𝑧 ∈ ran 𝐹)
1815, 17biimtrdi 253 . . . . . . 7 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
1918exlimivv 1932 . . . . . 6 (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
2011, 19syli 39 . . . . 5 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
2120exlimdv 1933 . . . 4 (Rel dom 𝐹 → (∃𝑤 𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
222, 21biimtrid 242 . . 3 (Rel dom 𝐹 → (𝑧 ∈ ran tpos 𝐹𝑧 ∈ ran 𝐹))
231elrn 5859 . . . 4 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 𝑤𝐹𝑧)
243, 1breldm 5874 . . . . . . 7 (𝑤𝐹𝑧𝑤 ∈ dom 𝐹)
25 elrel 5763 . . . . . . . 8 ((Rel dom 𝐹𝑤 ∈ dom 𝐹) → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩)
2625ex 412 . . . . . . 7 (Rel dom 𝐹 → (𝑤 ∈ dom 𝐹 → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩))
2724, 26syl5 34 . . . . . 6 (Rel dom 𝐹 → (𝑤𝐹𝑧 → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩))
28 breq1 5112 . . . . . . . . 9 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
2928, 14bitr4di 289 . . . . . . . 8 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧 ↔ ⟨𝑥, 𝑦⟩tpos 𝐹𝑧))
30 opex 5426 . . . . . . . . 9 𝑥, 𝑦⟩ ∈ V
3130, 1brelrn 5908 . . . . . . . 8 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧𝑧 ∈ ran tpos 𝐹)
3229, 31biimtrdi 253 . . . . . . 7 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3332exlimivv 1932 . . . . . 6 (∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3427, 33syli 39 . . . . 5 (Rel dom 𝐹 → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3534exlimdv 1933 . . . 4 (Rel dom 𝐹 → (∃𝑤 𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3623, 35biimtrid 242 . . 3 (Rel dom 𝐹 → (𝑧 ∈ ran 𝐹𝑧 ∈ ran tpos 𝐹))
3722, 36impbid 212 . 2 (Rel dom 𝐹 → (𝑧 ∈ ran tpos 𝐹𝑧 ∈ ran 𝐹))
3837eqrdv 2728 1 (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  cop 4597   class class class wbr 5109  ccnv 5639  dom cdm 5640  ran crn 5641  Rel wrel 5645  tpos ctpos 8206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-fv 6521  df-tpos 8207
This theorem is referenced by:  tposfo2  8230  oppchofcl  18227  oyoncl  18237
  Copyright terms: Public domain W3C validator