Step | Hyp | Ref
| Expression |
1 | | vex 3436 |
. . . . 5
⊢ 𝑧 ∈ V |
2 | 1 | elrn 5802 |
. . . 4
⊢ (𝑧 ∈ ran tpos 𝐹 ↔ ∃𝑤 𝑤tpos 𝐹𝑧) |
3 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
4 | 3, 1 | breldm 5817 |
. . . . . . . 8
⊢ (𝑤tpos 𝐹𝑧 → 𝑤 ∈ dom tpos 𝐹) |
5 | | dmtpos 8054 |
. . . . . . . . 9
⊢ (Rel dom
𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
6 | 5 | eleq2d 2824 |
. . . . . . . 8
⊢ (Rel dom
𝐹 → (𝑤 ∈ dom tpos 𝐹 ↔ 𝑤 ∈ ◡dom 𝐹)) |
7 | 4, 6 | syl5ib 243 |
. . . . . . 7
⊢ (Rel dom
𝐹 → (𝑤tpos 𝐹𝑧 → 𝑤 ∈ ◡dom 𝐹)) |
8 | | relcnv 6012 |
. . . . . . . 8
⊢ Rel ◡dom 𝐹 |
9 | | elrel 5708 |
. . . . . . . 8
⊢ ((Rel
◡dom 𝐹 ∧ 𝑤 ∈ ◡dom 𝐹) → ∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉) |
10 | 8, 9 | mpan 687 |
. . . . . . 7
⊢ (𝑤 ∈ ◡dom 𝐹 → ∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉) |
11 | 7, 10 | syl6 35 |
. . . . . 6
⊢ (Rel dom
𝐹 → (𝑤tpos 𝐹𝑧 → ∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉)) |
12 | | breq1 5077 |
. . . . . . . . 9
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑤tpos 𝐹𝑧 ↔ 〈𝑥, 𝑦〉tpos 𝐹𝑧)) |
13 | | brtpos 8051 |
. . . . . . . . . 10
⊢ (𝑧 ∈ V → (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) |
14 | 13 | elv 3438 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧) |
15 | 12, 14 | bitrdi 287 |
. . . . . . . 8
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑤tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) |
16 | | opex 5379 |
. . . . . . . . 9
⊢
〈𝑦, 𝑥〉 ∈ V |
17 | 16, 1 | brelrn 5851 |
. . . . . . . 8
⊢
(〈𝑦, 𝑥〉𝐹𝑧 → 𝑧 ∈ ran 𝐹) |
18 | 15, 17 | syl6bi 252 |
. . . . . . 7
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑤tpos 𝐹𝑧 → 𝑧 ∈ ran 𝐹)) |
19 | 18 | exlimivv 1935 |
. . . . . 6
⊢
(∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉 → (𝑤tpos 𝐹𝑧 → 𝑧 ∈ ran 𝐹)) |
20 | 11, 19 | syli 39 |
. . . . 5
⊢ (Rel dom
𝐹 → (𝑤tpos 𝐹𝑧 → 𝑧 ∈ ran 𝐹)) |
21 | 20 | exlimdv 1936 |
. . . 4
⊢ (Rel dom
𝐹 → (∃𝑤 𝑤tpos 𝐹𝑧 → 𝑧 ∈ ran 𝐹)) |
22 | 2, 21 | syl5bi 241 |
. . 3
⊢ (Rel dom
𝐹 → (𝑧 ∈ ran tpos 𝐹 → 𝑧 ∈ ran 𝐹)) |
23 | 1 | elrn 5802 |
. . . 4
⊢ (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 𝑤𝐹𝑧) |
24 | 3, 1 | breldm 5817 |
. . . . . . 7
⊢ (𝑤𝐹𝑧 → 𝑤 ∈ dom 𝐹) |
25 | | elrel 5708 |
. . . . . . . 8
⊢ ((Rel dom
𝐹 ∧ 𝑤 ∈ dom 𝐹) → ∃𝑦∃𝑥 𝑤 = 〈𝑦, 𝑥〉) |
26 | 25 | ex 413 |
. . . . . . 7
⊢ (Rel dom
𝐹 → (𝑤 ∈ dom 𝐹 → ∃𝑦∃𝑥 𝑤 = 〈𝑦, 𝑥〉)) |
27 | 24, 26 | syl5 34 |
. . . . . 6
⊢ (Rel dom
𝐹 → (𝑤𝐹𝑧 → ∃𝑦∃𝑥 𝑤 = 〈𝑦, 𝑥〉)) |
28 | | breq1 5077 |
. . . . . . . . 9
⊢ (𝑤 = 〈𝑦, 𝑥〉 → (𝑤𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) |
29 | 28, 14 | bitr4di 289 |
. . . . . . . 8
⊢ (𝑤 = 〈𝑦, 𝑥〉 → (𝑤𝐹𝑧 ↔ 〈𝑥, 𝑦〉tpos 𝐹𝑧)) |
30 | | opex 5379 |
. . . . . . . . 9
⊢
〈𝑥, 𝑦〉 ∈ V |
31 | 30, 1 | brelrn 5851 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉tpos 𝐹𝑧 → 𝑧 ∈ ran tpos 𝐹) |
32 | 29, 31 | syl6bi 252 |
. . . . . . 7
⊢ (𝑤 = 〈𝑦, 𝑥〉 → (𝑤𝐹𝑧 → 𝑧 ∈ ran tpos 𝐹)) |
33 | 32 | exlimivv 1935 |
. . . . . 6
⊢
(∃𝑦∃𝑥 𝑤 = 〈𝑦, 𝑥〉 → (𝑤𝐹𝑧 → 𝑧 ∈ ran tpos 𝐹)) |
34 | 27, 33 | syli 39 |
. . . . 5
⊢ (Rel dom
𝐹 → (𝑤𝐹𝑧 → 𝑧 ∈ ran tpos 𝐹)) |
35 | 34 | exlimdv 1936 |
. . . 4
⊢ (Rel dom
𝐹 → (∃𝑤 𝑤𝐹𝑧 → 𝑧 ∈ ran tpos 𝐹)) |
36 | 23, 35 | syl5bi 241 |
. . 3
⊢ (Rel dom
𝐹 → (𝑧 ∈ ran 𝐹 → 𝑧 ∈ ran tpos 𝐹)) |
37 | 22, 36 | impbid 211 |
. 2
⊢ (Rel dom
𝐹 → (𝑧 ∈ ran tpos 𝐹 ↔ 𝑧 ∈ ran 𝐹)) |
38 | 37 | eqrdv 2736 |
1
⊢ (Rel dom
𝐹 → ran tpos 𝐹 = ran 𝐹) |