MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rntpos Structured version   Visualization version   GIF version

Theorem rntpos 8179
Description: The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
rntpos (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)

Proof of Theorem rntpos
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3442 . . . . 5 𝑧 ∈ V
21elrn 5840 . . . 4 (𝑧 ∈ ran tpos 𝐹 ↔ ∃𝑤 𝑤tpos 𝐹𝑧)
3 vex 3442 . . . . . . . . 9 𝑤 ∈ V
43, 1breldm 5855 . . . . . . . 8 (𝑤tpos 𝐹𝑧𝑤 ∈ dom tpos 𝐹)
5 dmtpos 8178 . . . . . . . . 9 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
65eleq2d 2814 . . . . . . . 8 (Rel dom 𝐹 → (𝑤 ∈ dom tpos 𝐹𝑤dom 𝐹))
74, 6imbitrid 244 . . . . . . 7 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧𝑤dom 𝐹))
8 relcnv 6059 . . . . . . . 8 Rel dom 𝐹
9 elrel 5745 . . . . . . . 8 ((Rel dom 𝐹𝑤dom 𝐹) → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
108, 9mpan 690 . . . . . . 7 (𝑤dom 𝐹 → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
117, 10syl6 35 . . . . . 6 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧 → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩))
12 breq1 5098 . . . . . . . . 9 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧 ↔ ⟨𝑥, 𝑦⟩tpos 𝐹𝑧))
13 brtpos 8175 . . . . . . . . . 10 (𝑧 ∈ V → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
1413elv 3443 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧)
1512, 14bitrdi 287 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
16 opex 5411 . . . . . . . . 9 𝑦, 𝑥⟩ ∈ V
1716, 1brelrn 5888 . . . . . . . 8 (⟨𝑦, 𝑥𝐹𝑧𝑧 ∈ ran 𝐹)
1815, 17biimtrdi 253 . . . . . . 7 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
1918exlimivv 1932 . . . . . 6 (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
2011, 19syli 39 . . . . 5 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
2120exlimdv 1933 . . . 4 (Rel dom 𝐹 → (∃𝑤 𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
222, 21biimtrid 242 . . 3 (Rel dom 𝐹 → (𝑧 ∈ ran tpos 𝐹𝑧 ∈ ran 𝐹))
231elrn 5840 . . . 4 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 𝑤𝐹𝑧)
243, 1breldm 5855 . . . . . . 7 (𝑤𝐹𝑧𝑤 ∈ dom 𝐹)
25 elrel 5745 . . . . . . . 8 ((Rel dom 𝐹𝑤 ∈ dom 𝐹) → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩)
2625ex 412 . . . . . . 7 (Rel dom 𝐹 → (𝑤 ∈ dom 𝐹 → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩))
2724, 26syl5 34 . . . . . 6 (Rel dom 𝐹 → (𝑤𝐹𝑧 → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩))
28 breq1 5098 . . . . . . . . 9 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
2928, 14bitr4di 289 . . . . . . . 8 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧 ↔ ⟨𝑥, 𝑦⟩tpos 𝐹𝑧))
30 opex 5411 . . . . . . . . 9 𝑥, 𝑦⟩ ∈ V
3130, 1brelrn 5888 . . . . . . . 8 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧𝑧 ∈ ran tpos 𝐹)
3229, 31biimtrdi 253 . . . . . . 7 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3332exlimivv 1932 . . . . . 6 (∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3427, 33syli 39 . . . . 5 (Rel dom 𝐹 → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3534exlimdv 1933 . . . 4 (Rel dom 𝐹 → (∃𝑤 𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3623, 35biimtrid 242 . . 3 (Rel dom 𝐹 → (𝑧 ∈ ran 𝐹𝑧 ∈ ran tpos 𝐹))
3722, 36impbid 212 . 2 (Rel dom 𝐹 → (𝑧 ∈ ran tpos 𝐹𝑧 ∈ ran 𝐹))
3837eqrdv 2727 1 (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  Vcvv 3438  cop 4585   class class class wbr 5095  ccnv 5622  dom cdm 5623  ran crn 5624  Rel wrel 5628  tpos ctpos 8165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-tpos 8166
This theorem is referenced by:  tposfo2  8189  oppchofcl  18184  oyoncl  18194
  Copyright terms: Public domain W3C validator