![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > carduniima | Structured version Visualization version GIF version |
Description: The union of the image of a mapping to cardinals is a cardinal. Proposition 11.16 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.) |
Ref | Expression |
---|---|
carduniima | β’ (π΄ β π΅ β (πΉ:π΄βΆ(Ο βͺ ran β΅) β βͺ (πΉ β π΄) β (Ο βͺ ran β΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6721 | . . . . 5 β’ (πΉ:π΄βΆ(Ο βͺ ran β΅) β Fun πΉ) | |
2 | funimaexg 6635 | . . . . 5 β’ ((Fun πΉ β§ π΄ β π΅) β (πΉ β π΄) β V) | |
3 | 1, 2 | sylan 579 | . . . 4 β’ ((πΉ:π΄βΆ(Ο βͺ ran β΅) β§ π΄ β π΅) β (πΉ β π΄) β V) |
4 | 3 | expcom 413 | . . 3 β’ (π΄ β π΅ β (πΉ:π΄βΆ(Ο βͺ ran β΅) β (πΉ β π΄) β V)) |
5 | fimass 6739 | . . . . . . 7 β’ (πΉ:π΄βΆ(Ο βͺ ran β΅) β (πΉ β π΄) β (Ο βͺ ran β΅)) | |
6 | 5 | sseld 3982 | . . . . . 6 β’ (πΉ:π΄βΆ(Ο βͺ ran β΅) β (π₯ β (πΉ β π΄) β π₯ β (Ο βͺ ran β΅))) |
7 | iscard3 10091 | . . . . . 6 β’ ((cardβπ₯) = π₯ β π₯ β (Ο βͺ ran β΅)) | |
8 | 6, 7 | imbitrrdi 251 | . . . . 5 β’ (πΉ:π΄βΆ(Ο βͺ ran β΅) β (π₯ β (πΉ β π΄) β (cardβπ₯) = π₯)) |
9 | 8 | ralrimiv 3144 | . . . 4 β’ (πΉ:π΄βΆ(Ο βͺ ran β΅) β βπ₯ β (πΉ β π΄)(cardβπ₯) = π₯) |
10 | carduni 9979 | . . . 4 β’ ((πΉ β π΄) β V β (βπ₯ β (πΉ β π΄)(cardβπ₯) = π₯ β (cardββͺ (πΉ β π΄)) = βͺ (πΉ β π΄))) | |
11 | 9, 10 | syl5 34 | . . 3 β’ ((πΉ β π΄) β V β (πΉ:π΄βΆ(Ο βͺ ran β΅) β (cardββͺ (πΉ β π΄)) = βͺ (πΉ β π΄))) |
12 | 4, 11 | syli 39 | . 2 β’ (π΄ β π΅ β (πΉ:π΄βΆ(Ο βͺ ran β΅) β (cardββͺ (πΉ β π΄)) = βͺ (πΉ β π΄))) |
13 | iscard3 10091 | . 2 β’ ((cardββͺ (πΉ β π΄)) = βͺ (πΉ β π΄) β βͺ (πΉ β π΄) β (Ο βͺ ran β΅)) | |
14 | 12, 13 | imbitrdi 250 | 1 β’ (π΄ β π΅ β (πΉ:π΄βΆ(Ο βͺ ran β΅) β βͺ (πΉ β π΄) β (Ο βͺ ran β΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 βwral 3060 Vcvv 3473 βͺ cun 3947 βͺ cuni 4909 ran crn 5678 β cima 5680 Fun wfun 6538 βΆwf 6540 βcfv 6544 Οcom 7858 cardccrd 9933 β΅cale 9934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-inf2 9639 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-oi 9508 df-har 9555 df-card 9937 df-aleph 9938 |
This theorem is referenced by: cardinfima 10095 |
Copyright terms: Public domain | W3C validator |