Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > carduniima | Structured version Visualization version GIF version |
Description: The union of the image of a mapping to cardinals is a cardinal. Proposition 11.16 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.) |
Ref | Expression |
---|---|
carduniima | ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6502 | . . . . 5 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → Fun 𝐹) | |
2 | funimaexg 6422 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) | |
3 | 1, 2 | sylan 584 | . . . 4 ⊢ ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) |
4 | 3 | expcom 418 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹 “ 𝐴) ∈ V)) |
5 | fimass 6541 | . . . . . . 7 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹 “ 𝐴) ⊆ (ω ∪ ran ℵ)) | |
6 | 5 | sseld 3892 | . . . . . 6 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥 ∈ (𝐹 “ 𝐴) → 𝑥 ∈ (ω ∪ ran ℵ))) |
7 | iscard3 9546 | . . . . . 6 ⊢ ((card‘𝑥) = 𝑥 ↔ 𝑥 ∈ (ω ∪ ran ℵ)) | |
8 | 6, 7 | syl6ibr 255 | . . . . 5 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥 ∈ (𝐹 “ 𝐴) → (card‘𝑥) = 𝑥)) |
9 | 8 | ralrimiv 3113 | . . . 4 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∀𝑥 ∈ (𝐹 “ 𝐴)(card‘𝑥) = 𝑥) |
10 | carduni 9436 | . . . 4 ⊢ ((𝐹 “ 𝐴) ∈ V → (∀𝑥 ∈ (𝐹 “ 𝐴)(card‘𝑥) = 𝑥 → (card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴))) | |
11 | 9, 10 | syl5 34 | . . 3 ⊢ ((𝐹 “ 𝐴) ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴))) |
12 | 4, 11 | syli 39 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴))) |
13 | iscard3 9546 | . 2 ⊢ ((card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴) ↔ ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ)) | |
14 | 12, 13 | syl6ib 254 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ∀wral 3071 Vcvv 3410 ∪ cun 3857 ∪ cuni 4799 ran crn 5526 “ cima 5528 Fun wfun 6330 ⟶wf 6332 ‘cfv 6336 ωcom 7580 cardccrd 9390 ℵcale 9391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-inf2 9130 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-oi 9000 df-har 9047 df-card 9394 df-aleph 9395 |
This theorem is referenced by: cardinfima 9550 |
Copyright terms: Public domain | W3C validator |