![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > carduniima | Structured version Visualization version GIF version |
Description: The union of the image of a mapping to cardinals is a cardinal. Proposition 11.16 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.) |
Ref | Expression |
---|---|
carduniima | ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6740 | . . . . 5 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → Fun 𝐹) | |
2 | funimaexg 6654 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) | |
3 | 1, 2 | sylan 580 | . . . 4 ⊢ ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) |
4 | 3 | expcom 413 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹 “ 𝐴) ∈ V)) |
5 | fimass 6757 | . . . . . . 7 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹 “ 𝐴) ⊆ (ω ∪ ran ℵ)) | |
6 | 5 | sseld 3994 | . . . . . 6 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥 ∈ (𝐹 “ 𝐴) → 𝑥 ∈ (ω ∪ ran ℵ))) |
7 | iscard3 10131 | . . . . . 6 ⊢ ((card‘𝑥) = 𝑥 ↔ 𝑥 ∈ (ω ∪ ran ℵ)) | |
8 | 6, 7 | imbitrrdi 252 | . . . . 5 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥 ∈ (𝐹 “ 𝐴) → (card‘𝑥) = 𝑥)) |
9 | 8 | ralrimiv 3143 | . . . 4 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∀𝑥 ∈ (𝐹 “ 𝐴)(card‘𝑥) = 𝑥) |
10 | carduni 10019 | . . . 4 ⊢ ((𝐹 “ 𝐴) ∈ V → (∀𝑥 ∈ (𝐹 “ 𝐴)(card‘𝑥) = 𝑥 → (card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴))) | |
11 | 9, 10 | syl5 34 | . . 3 ⊢ ((𝐹 “ 𝐴) ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴))) |
12 | 4, 11 | syli 39 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴))) |
13 | iscard3 10131 | . 2 ⊢ ((card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴) ↔ ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ)) | |
14 | 12, 13 | imbitrdi 251 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ∪ cun 3961 ∪ cuni 4912 ran crn 5690 “ cima 5692 Fun wfun 6557 ⟶wf 6559 ‘cfv 6563 ωcom 7887 cardccrd 9973 ℵcale 9974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-oi 9548 df-har 9595 df-card 9977 df-aleph 9978 |
This theorem is referenced by: cardinfima 10135 |
Copyright terms: Public domain | W3C validator |