MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carduniima Structured version   Visualization version   GIF version

Theorem carduniima 9549
Description: The union of the image of a mapping to cardinals is a cardinal. Proposition 11.16 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
carduniima (𝐴𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹𝐴) ∈ (ω ∪ ran ℵ)))

Proof of Theorem carduniima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffun 6502 . . . . 5 (𝐹:𝐴⟶(ω ∪ ran ℵ) → Fun 𝐹)
2 funimaexg 6422 . . . . 5 ((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ∈ V)
31, 2sylan 584 . . . 4 ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ 𝐴𝐵) → (𝐹𝐴) ∈ V)
43expcom 418 . . 3 (𝐴𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹𝐴) ∈ V))
5 fimass 6541 . . . . . . 7 (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹𝐴) ⊆ (ω ∪ ran ℵ))
65sseld 3892 . . . . . 6 (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥 ∈ (𝐹𝐴) → 𝑥 ∈ (ω ∪ ran ℵ)))
7 iscard3 9546 . . . . . 6 ((card‘𝑥) = 𝑥𝑥 ∈ (ω ∪ ran ℵ))
86, 7syl6ibr 255 . . . . 5 (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥 ∈ (𝐹𝐴) → (card‘𝑥) = 𝑥))
98ralrimiv 3113 . . . 4 (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∀𝑥 ∈ (𝐹𝐴)(card‘𝑥) = 𝑥)
10 carduni 9436 . . . 4 ((𝐹𝐴) ∈ V → (∀𝑥 ∈ (𝐹𝐴)(card‘𝑥) = 𝑥 → (card‘ (𝐹𝐴)) = (𝐹𝐴)))
119, 10syl5 34 . . 3 ((𝐹𝐴) ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘ (𝐹𝐴)) = (𝐹𝐴)))
124, 11syli 39 . 2 (𝐴𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘ (𝐹𝐴)) = (𝐹𝐴)))
13 iscard3 9546 . 2 ((card‘ (𝐹𝐴)) = (𝐹𝐴) ↔ (𝐹𝐴) ∈ (ω ∪ ran ℵ))
1412, 13syl6ib 254 1 (𝐴𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹𝐴) ∈ (ω ∪ ran ℵ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112  wral 3071  Vcvv 3410  cun 3857   cuni 4799  ran crn 5526  cima 5528  Fun wfun 6330  wf 6332  cfv 6336  ωcom 7580  cardccrd 9390  cale 9391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9130
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-om 7581  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-oi 9000  df-har 9047  df-card 9394  df-aleph 9395
This theorem is referenced by:  cardinfima  9550
  Copyright terms: Public domain W3C validator