Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  carduniima Structured version   Visualization version   GIF version

Theorem carduniima 9549
 Description: The union of the image of a mapping to cardinals is a cardinal. Proposition 11.16 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
carduniima (𝐴𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹𝐴) ∈ (ω ∪ ran ℵ)))

Proof of Theorem carduniima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffun 6502 . . . . 5 (𝐹:𝐴⟶(ω ∪ ran ℵ) → Fun 𝐹)
2 funimaexg 6422 . . . . 5 ((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ∈ V)
31, 2sylan 584 . . . 4 ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ 𝐴𝐵) → (𝐹𝐴) ∈ V)
43expcom 418 . . 3 (𝐴𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹𝐴) ∈ V))
5 fimass 6541 . . . . . . 7 (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹𝐴) ⊆ (ω ∪ ran ℵ))
65sseld 3892 . . . . . 6 (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥 ∈ (𝐹𝐴) → 𝑥 ∈ (ω ∪ ran ℵ)))
7 iscard3 9546 . . . . . 6 ((card‘𝑥) = 𝑥𝑥 ∈ (ω ∪ ran ℵ))
86, 7syl6ibr 255 . . . . 5 (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥 ∈ (𝐹𝐴) → (card‘𝑥) = 𝑥))
98ralrimiv 3113 . . . 4 (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∀𝑥 ∈ (𝐹𝐴)(card‘𝑥) = 𝑥)
10 carduni 9436 . . . 4 ((𝐹𝐴) ∈ V → (∀𝑥 ∈ (𝐹𝐴)(card‘𝑥) = 𝑥 → (card‘ (𝐹𝐴)) = (𝐹𝐴)))
119, 10syl5 34 . . 3 ((𝐹𝐴) ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘ (𝐹𝐴)) = (𝐹𝐴)))
124, 11syli 39 . 2 (𝐴𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘ (𝐹𝐴)) = (𝐹𝐴)))
13 iscard3 9546 . 2 ((card‘ (𝐹𝐴)) = (𝐹𝐴) ↔ (𝐹𝐴) ∈ (ω ∪ ran ℵ))
1412, 13syl6ib 254 1 (𝐴𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹𝐴) ∈ (ω ∪ ran ℵ)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1539   ∈ wcel 2112  ∀wral 3071  Vcvv 3410   ∪ cun 3857  ∪ cuni 4799  ran crn 5526   “ cima 5528  Fun wfun 6330  ⟶wf 6332  ‘cfv 6336  ωcom 7580  cardccrd 9390  ℵcale 9391 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9130 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-om 7581  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-oi 9000  df-har 9047  df-card 9394  df-aleph 9395 This theorem is referenced by:  cardinfima  9550
 Copyright terms: Public domain W3C validator