| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > carduniima | Structured version Visualization version GIF version | ||
| Description: The union of the image of a mapping to cardinals is a cardinal. Proposition 11.16 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.) |
| Ref | Expression |
|---|---|
| carduniima | ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6673 | . . . . 5 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → Fun 𝐹) | |
| 2 | funimaexg 6587 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) | |
| 3 | 1, 2 | sylan 580 | . . . 4 ⊢ ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ∈ V) |
| 4 | 3 | expcom 413 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹 “ 𝐴) ∈ V)) |
| 5 | fimass 6690 | . . . . . . 7 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹 “ 𝐴) ⊆ (ω ∪ ran ℵ)) | |
| 6 | 5 | sseld 3942 | . . . . . 6 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥 ∈ (𝐹 “ 𝐴) → 𝑥 ∈ (ω ∪ ran ℵ))) |
| 7 | iscard3 10022 | . . . . . 6 ⊢ ((card‘𝑥) = 𝑥 ↔ 𝑥 ∈ (ω ∪ ran ℵ)) | |
| 8 | 6, 7 | imbitrrdi 252 | . . . . 5 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥 ∈ (𝐹 “ 𝐴) → (card‘𝑥) = 𝑥)) |
| 9 | 8 | ralrimiv 3124 | . . . 4 ⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∀𝑥 ∈ (𝐹 “ 𝐴)(card‘𝑥) = 𝑥) |
| 10 | carduni 9910 | . . . 4 ⊢ ((𝐹 “ 𝐴) ∈ V → (∀𝑥 ∈ (𝐹 “ 𝐴)(card‘𝑥) = 𝑥 → (card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴))) | |
| 11 | 9, 10 | syl5 34 | . . 3 ⊢ ((𝐹 “ 𝐴) ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴))) |
| 12 | 4, 11 | syli 39 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴))) |
| 13 | iscard3 10022 | . 2 ⊢ ((card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴) ↔ ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ)) | |
| 14 | 12, 13 | imbitrdi 251 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∪ cun 3909 ∪ cuni 4867 ran crn 5632 “ cima 5634 Fun wfun 6493 ⟶wf 6495 ‘cfv 6499 ωcom 7822 cardccrd 9864 ℵcale 9865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-oi 9439 df-har 9486 df-card 9868 df-aleph 9869 |
| This theorem is referenced by: cardinfima 10026 |
| Copyright terms: Public domain | W3C validator |