Step | Hyp | Ref
| Expression |
1 | | ssrab2 4009 |
. . . 4
⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On |
2 | | rabn0 4316 |
. . . . 5
⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑) |
3 | 2 | biimpri 227 |
. . . 4
⊢
(∃𝑥 ∈ On
𝜑 → {𝑥 ∈ On ∣ 𝜑} ≠ ∅) |
4 | | oninton 7622 |
. . . 4
⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → ∩ {𝑥
∈ On ∣ 𝜑} ∈
On) |
5 | 1, 3, 4 | sylancr 586 |
. . 3
⊢
(∃𝑥 ∈ On
𝜑 → ∩ {𝑥
∈ On ∣ 𝜑} ∈
On) |
6 | | onminesb 7620 |
. . 3
⊢
(∃𝑥 ∈ On
𝜑 → [∩ {𝑥
∈ On ∣ 𝜑} / 𝑥]𝜑) |
7 | | onss 7611 |
. . . . . . 7
⊢ (∩ {𝑥
∈ On ∣ 𝜑} ∈
On → ∩ {𝑥 ∈ On ∣ 𝜑} ⊆ On) |
8 | 5, 7 | syl 17 |
. . . . . 6
⊢
(∃𝑥 ∈ On
𝜑 → ∩ {𝑥
∈ On ∣ 𝜑} ⊆
On) |
9 | 8 | sseld 3916 |
. . . . 5
⊢
(∃𝑥 ∈ On
𝜑 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → 𝑦 ∈ On)) |
10 | | onminex.1 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
11 | 10 | onnminsb 7626 |
. . . . 5
⊢ (𝑦 ∈ On → (𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝜑} →
¬ 𝜓)) |
12 | 9, 11 | syli 39 |
. . . 4
⊢
(∃𝑥 ∈ On
𝜑 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓)) |
13 | 12 | ralrimiv 3106 |
. . 3
⊢
(∃𝑥 ∈ On
𝜑 → ∀𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝜑} ¬
𝜓) |
14 | | dfsbcq2 3714 |
. . . . 5
⊢ (𝑧 = ∩
{𝑥 ∈ On ∣ 𝜑} → ([𝑧 / 𝑥]𝜑 ↔ [∩
{𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑)) |
15 | | raleq 3333 |
. . . . 5
⊢ (𝑧 = ∩
{𝑥 ∈ On ∣ 𝜑} → (∀𝑦 ∈ 𝑧 ¬ 𝜓 ↔ ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)) |
16 | 14, 15 | anbi12d 630 |
. . . 4
⊢ (𝑧 = ∩
{𝑥 ∈ On ∣ 𝜑} → (([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓) ↔ ([∩ {𝑥
∈ On ∣ 𝜑} / 𝑥]𝜑 ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓))) |
17 | 16 | rspcev 3552 |
. . 3
⊢ ((∩ {𝑥
∈ On ∣ 𝜑} ∈
On ∧ ([∩ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑 ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)) → ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓)) |
18 | 5, 6, 13, 17 | syl12anc 833 |
. 2
⊢
(∃𝑥 ∈ On
𝜑 → ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓)) |
19 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑧(𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓) |
20 | | nfs1v 2155 |
. . . 4
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
21 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑥∀𝑦 ∈ 𝑧 ¬ 𝜓 |
22 | 20, 21 | nfan 1903 |
. . 3
⊢
Ⅎ𝑥([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓) |
23 | | sbequ12 2247 |
. . . 4
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
24 | | raleq 3333 |
. . . 4
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝑧 ¬ 𝜓)) |
25 | 23, 24 | anbi12d 630 |
. . 3
⊢ (𝑥 = 𝑧 → ((𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓))) |
26 | 19, 22, 25 | cbvrexw 3364 |
. 2
⊢
(∃𝑥 ∈ On
(𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓) ↔ ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓)) |
27 | 18, 26 | sylibr 233 |
1
⊢
(∃𝑥 ∈ On
𝜑 → ∃𝑥 ∈ On (𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓)) |