MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onminex Structured version   Visualization version   GIF version

Theorem onminex 7527
Description: If a wff is true for an ordinal number, then there is the smallest ordinal number for which it is true. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Mario Carneiro, 20-Nov-2016.)
Hypothesis
Ref Expression
onminex.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
onminex (∃𝑥 ∈ On 𝜑 → ∃𝑥 ∈ On (𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem onminex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3986 . . . 4 {𝑥 ∈ On ∣ 𝜑} ⊆ On
2 rabn0 4284 . . . . 5 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑)
32biimpri 231 . . . 4 (∃𝑥 ∈ On 𝜑 → {𝑥 ∈ On ∣ 𝜑} ≠ ∅)
4 oninton 7520 . . . 4 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → {𝑥 ∈ On ∣ 𝜑} ∈ On)
51, 3, 4sylancr 590 . . 3 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)
6 onminesb 7518 . . 3 (∃𝑥 ∈ On 𝜑[ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑)
7 onss 7510 . . . . . . 7 ( {𝑥 ∈ On ∣ 𝜑} ∈ On → {𝑥 ∈ On ∣ 𝜑} ⊆ On)
85, 7syl 17 . . . . . 6 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ⊆ On)
98sseld 3893 . . . . 5 (∃𝑥 ∈ On 𝜑 → (𝑦 {𝑥 ∈ On ∣ 𝜑} → 𝑦 ∈ On))
10 onminex.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
1110onnminsb 7524 . . . . 5 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓))
129, 11syli 39 . . . 4 (∃𝑥 ∈ On 𝜑 → (𝑦 {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓))
1312ralrimiv 3112 . . 3 (∃𝑥 ∈ On 𝜑 → ∀𝑦 {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)
14 dfsbcq2 3701 . . . . 5 (𝑧 = {𝑥 ∈ On ∣ 𝜑} → ([𝑧 / 𝑥]𝜑[ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑))
15 raleq 3323 . . . . 5 (𝑧 = {𝑥 ∈ On ∣ 𝜑} → (∀𝑦𝑧 ¬ 𝜓 ↔ ∀𝑦 {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓))
1614, 15anbi12d 633 . . . 4 (𝑧 = {𝑥 ∈ On ∣ 𝜑} → (([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓) ↔ ([ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑 ∧ ∀𝑦 {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)))
1716rspcev 3543 . . 3 (( {𝑥 ∈ On ∣ 𝜑} ∈ On ∧ ([ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑 ∧ ∀𝑦 {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)) → ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓))
185, 6, 13, 17syl12anc 835 . 2 (∃𝑥 ∈ On 𝜑 → ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓))
19 nfv 1915 . . 3 𝑧(𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓)
20 nfs1v 2157 . . . 4 𝑥[𝑧 / 𝑥]𝜑
21 nfv 1915 . . . 4 𝑥𝑦𝑧 ¬ 𝜓
2220, 21nfan 1900 . . 3 𝑥([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓)
23 sbequ12 2250 . . . 4 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
24 raleq 3323 . . . 4 (𝑥 = 𝑧 → (∀𝑦𝑥 ¬ 𝜓 ↔ ∀𝑦𝑧 ¬ 𝜓))
2523, 24anbi12d 633 . . 3 (𝑥 = 𝑧 → ((𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓)))
2619, 22, 25cbvrexw 3353 . 2 (∃𝑥 ∈ On (𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓) ↔ ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓))
2718, 26sylibr 237 1 (∃𝑥 ∈ On 𝜑 → ∃𝑥 ∈ On (𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  [wsb 2069  wcel 2111  wne 2951  wral 3070  wrex 3071  {crab 3074  [wsbc 3698  wss 3860  c0 4227   cint 4841  Oncon0 6174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-br 5037  df-opab 5099  df-tr 5143  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-ord 6177  df-on 6178
This theorem is referenced by:  tz7.49  8097  omeulem1  8224  zorn2lem7  9975
  Copyright terms: Public domain W3C validator