| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ssrab2 4080 | . . . 4
⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | 
| 2 |  | rabn0 4389 | . . . . 5
⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑) | 
| 3 | 2 | biimpri 228 | . . . 4
⊢
(∃𝑥 ∈ On
𝜑 → {𝑥 ∈ On ∣ 𝜑} ≠ ∅) | 
| 4 |  | oninton 7815 | . . . 4
⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → ∩ {𝑥
∈ On ∣ 𝜑} ∈
On) | 
| 5 | 1, 3, 4 | sylancr 587 | . . 3
⊢
(∃𝑥 ∈ On
𝜑 → ∩ {𝑥
∈ On ∣ 𝜑} ∈
On) | 
| 6 |  | onminesb 7813 | . . 3
⊢
(∃𝑥 ∈ On
𝜑 → [∩ {𝑥
∈ On ∣ 𝜑} / 𝑥]𝜑) | 
| 7 |  | onss 7805 | . . . . . . 7
⊢ (∩ {𝑥
∈ On ∣ 𝜑} ∈
On → ∩ {𝑥 ∈ On ∣ 𝜑} ⊆ On) | 
| 8 | 5, 7 | syl 17 | . . . . . 6
⊢
(∃𝑥 ∈ On
𝜑 → ∩ {𝑥
∈ On ∣ 𝜑} ⊆
On) | 
| 9 | 8 | sseld 3982 | . . . . 5
⊢
(∃𝑥 ∈ On
𝜑 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → 𝑦 ∈ On)) | 
| 10 |  | onminex.1 | . . . . . 6
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| 11 | 10 | onnminsb 7819 | . . . . 5
⊢ (𝑦 ∈ On → (𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝜑} →
¬ 𝜓)) | 
| 12 | 9, 11 | syli 39 | . . . 4
⊢
(∃𝑥 ∈ On
𝜑 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓)) | 
| 13 | 12 | ralrimiv 3145 | . . 3
⊢
(∃𝑥 ∈ On
𝜑 → ∀𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝜑} ¬
𝜓) | 
| 14 |  | dfsbcq2 3791 | . . . . 5
⊢ (𝑧 = ∩
{𝑥 ∈ On ∣ 𝜑} → ([𝑧 / 𝑥]𝜑 ↔ [∩
{𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑)) | 
| 15 |  | raleq 3323 | . . . . 5
⊢ (𝑧 = ∩
{𝑥 ∈ On ∣ 𝜑} → (∀𝑦 ∈ 𝑧 ¬ 𝜓 ↔ ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)) | 
| 16 | 14, 15 | anbi12d 632 | . . . 4
⊢ (𝑧 = ∩
{𝑥 ∈ On ∣ 𝜑} → (([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓) ↔ ([∩ {𝑥
∈ On ∣ 𝜑} / 𝑥]𝜑 ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓))) | 
| 17 | 16 | rspcev 3622 | . . 3
⊢ ((∩ {𝑥
∈ On ∣ 𝜑} ∈
On ∧ ([∩ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑 ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)) → ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓)) | 
| 18 | 5, 6, 13, 17 | syl12anc 837 | . 2
⊢
(∃𝑥 ∈ On
𝜑 → ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓)) | 
| 19 |  | nfv 1914 | . . 3
⊢
Ⅎ𝑧(𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓) | 
| 20 |  | nfs1v 2156 | . . . 4
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 | 
| 21 |  | nfv 1914 | . . . 4
⊢
Ⅎ𝑥∀𝑦 ∈ 𝑧 ¬ 𝜓 | 
| 22 | 20, 21 | nfan 1899 | . . 3
⊢
Ⅎ𝑥([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓) | 
| 23 |  | sbequ12 2251 | . . . 4
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | 
| 24 |  | raleq 3323 | . . . 4
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝑧 ¬ 𝜓)) | 
| 25 | 23, 24 | anbi12d 632 | . . 3
⊢ (𝑥 = 𝑧 → ((𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓))) | 
| 26 | 19, 22, 25 | cbvrexw 3307 | . 2
⊢
(∃𝑥 ∈ On
(𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓) ↔ ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓)) | 
| 27 | 18, 26 | sylibr 234 | 1
⊢
(∃𝑥 ∈ On
𝜑 → ∃𝑥 ∈ On (𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓)) |