| Step | Hyp | Ref
| Expression |
| 1 | | ssrab2 4060 |
. . . 4
⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On |
| 2 | | rabn0 4369 |
. . . . 5
⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑) |
| 3 | 2 | biimpri 228 |
. . . 4
⊢
(∃𝑥 ∈ On
𝜑 → {𝑥 ∈ On ∣ 𝜑} ≠ ∅) |
| 4 | | oninton 7794 |
. . . 4
⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → ∩ {𝑥
∈ On ∣ 𝜑} ∈
On) |
| 5 | 1, 3, 4 | sylancr 587 |
. . 3
⊢
(∃𝑥 ∈ On
𝜑 → ∩ {𝑥
∈ On ∣ 𝜑} ∈
On) |
| 6 | | onminesb 7792 |
. . 3
⊢
(∃𝑥 ∈ On
𝜑 → [∩ {𝑥
∈ On ∣ 𝜑} / 𝑥]𝜑) |
| 7 | | onss 7784 |
. . . . . . 7
⊢ (∩ {𝑥
∈ On ∣ 𝜑} ∈
On → ∩ {𝑥 ∈ On ∣ 𝜑} ⊆ On) |
| 8 | 5, 7 | syl 17 |
. . . . . 6
⊢
(∃𝑥 ∈ On
𝜑 → ∩ {𝑥
∈ On ∣ 𝜑} ⊆
On) |
| 9 | 8 | sseld 3962 |
. . . . 5
⊢
(∃𝑥 ∈ On
𝜑 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → 𝑦 ∈ On)) |
| 10 | | onminex.1 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 11 | 10 | onnminsb 7798 |
. . . . 5
⊢ (𝑦 ∈ On → (𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝜑} →
¬ 𝜓)) |
| 12 | 9, 11 | syli 39 |
. . . 4
⊢
(∃𝑥 ∈ On
𝜑 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓)) |
| 13 | 12 | ralrimiv 3132 |
. . 3
⊢
(∃𝑥 ∈ On
𝜑 → ∀𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝜑} ¬
𝜓) |
| 14 | | dfsbcq2 3773 |
. . . . 5
⊢ (𝑧 = ∩
{𝑥 ∈ On ∣ 𝜑} → ([𝑧 / 𝑥]𝜑 ↔ [∩
{𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑)) |
| 15 | | raleq 3306 |
. . . . 5
⊢ (𝑧 = ∩
{𝑥 ∈ On ∣ 𝜑} → (∀𝑦 ∈ 𝑧 ¬ 𝜓 ↔ ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)) |
| 16 | 14, 15 | anbi12d 632 |
. . . 4
⊢ (𝑧 = ∩
{𝑥 ∈ On ∣ 𝜑} → (([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓) ↔ ([∩ {𝑥
∈ On ∣ 𝜑} / 𝑥]𝜑 ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓))) |
| 17 | 16 | rspcev 3606 |
. . 3
⊢ ((∩ {𝑥
∈ On ∣ 𝜑} ∈
On ∧ ([∩ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑 ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)) → ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓)) |
| 18 | 5, 6, 13, 17 | syl12anc 836 |
. 2
⊢
(∃𝑥 ∈ On
𝜑 → ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓)) |
| 19 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑧(𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓) |
| 20 | | nfs1v 2157 |
. . . 4
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
| 21 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑥∀𝑦 ∈ 𝑧 ¬ 𝜓 |
| 22 | 20, 21 | nfan 1899 |
. . 3
⊢
Ⅎ𝑥([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓) |
| 23 | | sbequ12 2252 |
. . . 4
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
| 24 | | raleq 3306 |
. . . 4
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝑧 ¬ 𝜓)) |
| 25 | 23, 24 | anbi12d 632 |
. . 3
⊢ (𝑥 = 𝑧 → ((𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓))) |
| 26 | 19, 22, 25 | cbvrexw 3291 |
. 2
⊢
(∃𝑥 ∈ On
(𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓) ↔ ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝜓)) |
| 27 | 18, 26 | sylibr 234 |
1
⊢
(∃𝑥 ∈ On
𝜑 → ∃𝑥 ∈ On (𝜑 ∧ ∀𝑦 ∈ 𝑥 ¬ 𝜓)) |