MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onminex Structured version   Visualization version   GIF version

Theorem onminex 7385
Description: If a wff is true for an ordinal number, then there is the smallest ordinal number for which it is true. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Mario Carneiro, 20-Nov-2016.)
Hypothesis
Ref Expression
onminex.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
onminex (∃𝑥 ∈ On 𝜑 → ∃𝑥 ∈ On (𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem onminex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3983 . . . 4 {𝑥 ∈ On ∣ 𝜑} ⊆ On
2 rabn0 4265 . . . . 5 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑)
32biimpri 229 . . . 4 (∃𝑥 ∈ On 𝜑 → {𝑥 ∈ On ∣ 𝜑} ≠ ∅)
4 oninton 7378 . . . 4 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → {𝑥 ∈ On ∣ 𝜑} ∈ On)
51, 3, 4sylancr 587 . . 3 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)
6 onminesb 7376 . . 3 (∃𝑥 ∈ On 𝜑[ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑)
7 onss 7368 . . . . . . 7 ( {𝑥 ∈ On ∣ 𝜑} ∈ On → {𝑥 ∈ On ∣ 𝜑} ⊆ On)
85, 7syl 17 . . . . . 6 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ⊆ On)
98sseld 3894 . . . . 5 (∃𝑥 ∈ On 𝜑 → (𝑦 {𝑥 ∈ On ∣ 𝜑} → 𝑦 ∈ On))
10 onminex.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
1110onnminsb 7382 . . . . 5 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓))
129, 11syli 39 . . . 4 (∃𝑥 ∈ On 𝜑 → (𝑦 {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓))
1312ralrimiv 3150 . . 3 (∃𝑥 ∈ On 𝜑 → ∀𝑦 {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)
14 dfsbcq2 3714 . . . . 5 (𝑧 = {𝑥 ∈ On ∣ 𝜑} → ([𝑧 / 𝑥]𝜑[ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑))
15 raleq 3367 . . . . 5 (𝑧 = {𝑥 ∈ On ∣ 𝜑} → (∀𝑦𝑧 ¬ 𝜓 ↔ ∀𝑦 {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓))
1614, 15anbi12d 630 . . . 4 (𝑧 = {𝑥 ∈ On ∣ 𝜑} → (([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓) ↔ ([ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑 ∧ ∀𝑦 {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)))
1716rspcev 3561 . . 3 (( {𝑥 ∈ On ∣ 𝜑} ∈ On ∧ ([ {𝑥 ∈ On ∣ 𝜑} / 𝑥]𝜑 ∧ ∀𝑦 {𝑥 ∈ On ∣ 𝜑} ¬ 𝜓)) → ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓))
185, 6, 13, 17syl12anc 833 . 2 (∃𝑥 ∈ On 𝜑 → ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓))
19 nfv 1896 . . 3 𝑧(𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓)
20 nfs1v 2239 . . . 4 𝑥[𝑧 / 𝑥]𝜑
21 nfv 1896 . . . 4 𝑥𝑦𝑧 ¬ 𝜓
2220, 21nfan 1885 . . 3 𝑥([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓)
23 sbequ12 2218 . . . 4 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
24 raleq 3367 . . . 4 (𝑥 = 𝑧 → (∀𝑦𝑥 ¬ 𝜓 ↔ ∀𝑦𝑧 ¬ 𝜓))
2523, 24anbi12d 630 . . 3 (𝑥 = 𝑧 → ((𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓)))
2619, 22, 25cbvrex 3402 . 2 (∃𝑥 ∈ On (𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓) ↔ ∃𝑧 ∈ On ([𝑧 / 𝑥]𝜑 ∧ ∀𝑦𝑧 ¬ 𝜓))
2718, 26sylibr 235 1 (∃𝑥 ∈ On 𝜑 → ∃𝑥 ∈ On (𝜑 ∧ ∀𝑦𝑥 ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1525  [wsb 2044  wcel 2083  wne 2986  wral 3107  wrex 3108  {crab 3111  [wsbc 3711  wss 3865  c0 4217   cint 4788  Oncon0 6073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-br 4969  df-opab 5031  df-tr 5071  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-ord 6076  df-on 6077
This theorem is referenced by:  tz7.49  7939  omeulem1  8065  zorn2lem7  9777
  Copyright terms: Public domain W3C validator