Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgbtwnswapid | Structured version Visualization version GIF version |
Description: If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 16-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnswapid.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnswapid.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnswapid.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnswapid.4 | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐶)) |
tgbtwnswapid.5 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
Ref | Expression |
---|---|
tgbtwnswapid | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐺 ∈ TarskiG) |
6 | tgbtwnswapid.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐴 ∈ 𝑃) |
8 | simplr 766 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ 𝑃) | |
9 | simprl 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐴𝐼𝐴)) | |
10 | 1, 2, 3, 5, 7, 8, 9 | axtgbtwnid 27029 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐴 = 𝑥) |
11 | tgbtwnswapid.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 11 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 ∈ 𝑃) |
13 | simprr 770 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐵𝐼𝐵)) | |
14 | 1, 2, 3, 5, 12, 8, 13 | axtgbtwnid 27029 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 = 𝑥) |
15 | 10, 14 | eqtr4d 2779 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐴 = 𝐵) |
16 | tgbtwnswapid.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
17 | tgbtwnswapid.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐶)) | |
18 | tgbtwnswapid.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
19 | 1, 2, 3, 4, 11, 6, 16, 6, 11, 17, 18 | axtgpasch 27030 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) |
20 | 15, 19 | r19.29a 3155 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 distcds 17060 TarskiGcstrkg 26990 Itvcitv 26996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5247 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 df-trkgb 27012 df-trkg 27016 |
This theorem is referenced by: legtri3 27153 |
Copyright terms: Public domain | W3C validator |