MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnswapid Structured version   Visualization version   GIF version

Theorem tgbtwnswapid 28212
Description: If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 16-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Baseβ€˜πΊ)
tkgeom.d βˆ’ = (distβ€˜πΊ)
tkgeom.i 𝐼 = (Itvβ€˜πΊ)
tkgeom.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgbtwnswapid.1 (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgbtwnswapid.2 (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgbtwnswapid.3 (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgbtwnswapid.4 (πœ‘ β†’ 𝐴 ∈ (𝐡𝐼𝐢))
tgbtwnswapid.5 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
Assertion
Ref Expression
tgbtwnswapid (πœ‘ β†’ 𝐴 = 𝐡)

Proof of Theorem tgbtwnswapid
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Baseβ€˜πΊ)
2 tkgeom.d . . . 4 βˆ’ = (distβ€˜πΊ)
3 tkgeom.i . . . 4 𝐼 = (Itvβ€˜πΊ)
4 tkgeom.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54ad2antrr 723 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐴) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ 𝐺 ∈ TarskiG)
6 tgbtwnswapid.1 . . . . 5 (πœ‘ β†’ 𝐴 ∈ 𝑃)
76ad2antrr 723 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐴) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ 𝐴 ∈ 𝑃)
8 simplr 766 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐴) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ π‘₯ ∈ 𝑃)
9 simprl 768 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐴) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ π‘₯ ∈ (𝐴𝐼𝐴))
101, 2, 3, 5, 7, 8, 9axtgbtwnid 28186 . . 3 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐴) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ 𝐴 = π‘₯)
11 tgbtwnswapid.2 . . . . 5 (πœ‘ β†’ 𝐡 ∈ 𝑃)
1211ad2antrr 723 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐴) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ 𝐡 ∈ 𝑃)
13 simprr 770 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐴) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ π‘₯ ∈ (𝐡𝐼𝐡))
141, 2, 3, 5, 12, 8, 13axtgbtwnid 28186 . . 3 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐴) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ 𝐡 = π‘₯)
1510, 14eqtr4d 2767 . 2 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐴) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ 𝐴 = 𝐡)
16 tgbtwnswapid.3 . . 3 (πœ‘ β†’ 𝐢 ∈ 𝑃)
17 tgbtwnswapid.4 . . 3 (πœ‘ β†’ 𝐴 ∈ (𝐡𝐼𝐢))
18 tgbtwnswapid.5 . . 3 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
191, 2, 3, 4, 11, 6, 16, 6, 11, 17, 18axtgpasch 28187 . 2 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝑃 (π‘₯ ∈ (𝐴𝐼𝐴) ∧ π‘₯ ∈ (𝐡𝐼𝐡)))
2015, 19r19.29a 3154 1 (πœ‘ β†’ 𝐴 = 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  β€˜cfv 6533  (class class class)co 7401  Basecbs 17143  distcds 17205  TarskiGcstrkg 28147  Itvcitv 28153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-nul 5296
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-iota 6485  df-fv 6541  df-ov 7404  df-trkgb 28169  df-trkg 28173
This theorem is referenced by:  legtri3  28310
  Copyright terms: Public domain W3C validator