| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwnswapid | Structured version Visualization version GIF version | ||
| Description: If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 16-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwnswapid.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwnswapid.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwnswapid.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwnswapid.4 | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐶)) |
| tgbtwnswapid.5 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
| Ref | Expression |
|---|---|
| tgbtwnswapid | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐺 ∈ TarskiG) |
| 6 | tgbtwnswapid.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | 6 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐴 ∈ 𝑃) |
| 8 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ 𝑃) | |
| 9 | simprl 770 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐴𝐼𝐴)) | |
| 10 | 1, 2, 3, 5, 7, 8, 9 | axtgbtwnid 28464 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐴 = 𝑥) |
| 11 | tgbtwnswapid.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 12 | 11 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 ∈ 𝑃) |
| 13 | simprr 772 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐵𝐼𝐵)) | |
| 14 | 1, 2, 3, 5, 12, 8, 13 | axtgbtwnid 28464 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 = 𝑥) |
| 15 | 10, 14 | eqtr4d 2771 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐴 = 𝐵) |
| 16 | tgbtwnswapid.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 17 | tgbtwnswapid.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐶)) | |
| 18 | tgbtwnswapid.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
| 19 | 1, 2, 3, 4, 11, 6, 16, 6, 11, 17, 18 | axtgpasch 28465 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) |
| 20 | 15, 19 | r19.29a 3141 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 distcds 17177 TarskiGcstrkg 28425 Itvcitv 28431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-trkgb 28447 df-trkg 28451 |
| This theorem is referenced by: legtri3 28588 |
| Copyright terms: Public domain | W3C validator |