![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwnswapid | Structured version Visualization version GIF version |
Description: If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 16-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnswapid.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnswapid.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnswapid.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnswapid.4 | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐶)) |
tgbtwnswapid.5 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
Ref | Expression |
---|---|
tgbtwnswapid | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 724 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐺 ∈ TarskiG) |
6 | tgbtwnswapid.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | ad2antrr 724 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐴 ∈ 𝑃) |
8 | simplr 767 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ 𝑃) | |
9 | simprl 769 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐴𝐼𝐴)) | |
10 | 1, 2, 3, 5, 7, 8, 9 | axtgbtwnid 28390 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐴 = 𝑥) |
11 | tgbtwnswapid.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 11 | ad2antrr 724 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 ∈ 𝑃) |
13 | simprr 771 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐵𝐼𝐵)) | |
14 | 1, 2, 3, 5, 12, 8, 13 | axtgbtwnid 28390 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 = 𝑥) |
15 | 10, 14 | eqtr4d 2769 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐴 = 𝐵) |
16 | tgbtwnswapid.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
17 | tgbtwnswapid.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐶)) | |
18 | tgbtwnswapid.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
19 | 1, 2, 3, 4, 11, 6, 16, 6, 11, 17, 18 | axtgpasch 28391 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐴) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) |
20 | 15, 19 | r19.29a 3152 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 distcds 17270 TarskiGcstrkg 28351 Itvcitv 28357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-nul 5303 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-iota 6498 df-fv 6554 df-ov 7419 df-trkgb 28373 df-trkg 28377 |
This theorem is referenced by: legtri3 28514 |
Copyright terms: Public domain | W3C validator |