MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legtri3 Structured version   Visualization version   GIF version

Theorem legtri3 26378
Description: Equality from the less-than relationship. Proposition 5.9 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
legtri3.1 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
legtri3.2 (𝜑 → (𝐶 𝐷) (𝐴 𝐵))
Assertion
Ref Expression
legtri3 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))

Proof of Theorem legtri3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 774 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
21simprd 498 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐴 𝐵) = (𝐶 𝑥))
3 legval.p . . . . . 6 𝑃 = (Base‘𝐺)
4 legval.d . . . . . 6 = (dist‘𝐺)
5 legval.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 legval.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
76ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐺 ∈ TarskiG)
8 simp-4r 782 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥𝑃)
9 legtrd.d . . . . . . 7 (𝜑𝐷𝑃)
109ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷𝑃)
11 legtrd.c . . . . . . 7 (𝜑𝐶𝑃)
1211ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐶𝑃)
131simpld 497 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝐶𝐼𝐷))
143, 4, 5, 7, 12, 8, 10, 13tgbtwncom 26276 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝐷𝐼𝐶))
15 simpr 487 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
1615simpld 497 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝐶𝐼𝑦))
17 simplr 767 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑦𝑃)
18 legid.b . . . . . . . . . . 11 (𝜑𝐵𝑃)
1918ad4antr 730 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐵𝑃)
20 legid.a . . . . . . . . . . . 12 (𝜑𝐴𝑃)
2120ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐴𝑃)
223, 4, 5, 7, 12, 10, 17, 16tgbtwncom 26276 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝑦𝐼𝐶))
233, 4, 5, 7, 17, 10, 8, 12, 22, 14tgbtwnexch2 26284 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝑦𝐼𝐶))
243, 4, 5, 7, 19, 21tgbtwntriv1 26279 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐵 ∈ (𝐵𝐼𝐴))
2515simprd 498 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑦) = (𝐴 𝐵))
263, 4, 5, 7, 12, 17, 21, 19, 25tgcgrcomlr 26268 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑦 𝐶) = (𝐵 𝐴))
272eqcomd 2829 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑥) = (𝐴 𝐵))
283, 4, 5, 7, 12, 8, 21, 19, 27tgcgrcomlr 26268 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑥 𝐶) = (𝐵 𝐴))
293, 4, 5, 7, 17, 8, 12, 19, 19, 21, 23, 24, 26, 28tgcgrsub 26297 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑦 𝑥) = (𝐵 𝐵))
303, 4, 5, 7, 17, 8, 19, 29axtgcgrid 26251 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑦 = 𝑥)
3130oveq2d 7174 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶𝐼𝑦) = (𝐶𝐼𝑥))
3216, 31eleqtrd 2917 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝐶𝐼𝑥))
333, 4, 5, 7, 12, 10, 8, 32tgbtwncom 26276 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝑥𝐼𝐶))
343, 4, 5, 7, 8, 10, 12, 14, 33tgbtwnswapid 26280 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 = 𝐷)
3534oveq2d 7174 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑥) = (𝐶 𝐷))
362, 35eqtrd 2858 . . 3 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐴 𝐵) = (𝐶 𝐷))
37 legtri3.2 . . . . 5 (𝜑 → (𝐶 𝐷) (𝐴 𝐵))
38 legval.l . . . . . 6 = (≤G‘𝐺)
393, 4, 5, 38, 6, 11, 9, 20, 18legov2 26374 . . . . 5 (𝜑 → ((𝐶 𝐷) (𝐴 𝐵) ↔ ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))))
4037, 39mpbid 234 . . . 4 (𝜑 → ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
4140ad2antrr 724 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
4236, 41r19.29a 3291 . 2 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → (𝐴 𝐵) = (𝐶 𝐷))
43 legtri3.1 . . 3 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
443, 4, 5, 38, 6, 20, 18, 11, 9legov 26373 . . 3 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))))
4543, 44mpbid 234 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
4642, 45r19.29a 3291 1 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3141   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  distcds 16576  TarskiGcstrkg 26218  Itvcitv 26224  ≤Gcleg 26370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-trkgc 26236  df-trkgb 26237  df-trkgcb 26238  df-trkg 26241  df-cgrg 26299  df-leg 26371
This theorem is referenced by:  legeq  26381  legbtwn  26382  legso  26387
  Copyright terms: Public domain W3C validator