MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legtri3 Structured version   Visualization version   GIF version

Theorem legtri3 28598
Description: Equality from the less-than relationship. Proposition 5.9 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
legtri3.1 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
legtri3.2 (𝜑 → (𝐶 𝐷) (𝐴 𝐵))
Assertion
Ref Expression
legtri3 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))

Proof of Theorem legtri3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 776 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
21simprd 495 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐴 𝐵) = (𝐶 𝑥))
3 legval.p . . . . . 6 𝑃 = (Base‘𝐺)
4 legval.d . . . . . 6 = (dist‘𝐺)
5 legval.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 legval.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
76ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐺 ∈ TarskiG)
8 simp-4r 784 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥𝑃)
9 legtrd.d . . . . . . 7 (𝜑𝐷𝑃)
109ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷𝑃)
11 legtrd.c . . . . . . 7 (𝜑𝐶𝑃)
1211ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐶𝑃)
131simpld 494 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝐶𝐼𝐷))
143, 4, 5, 7, 12, 8, 10, 13tgbtwncom 28496 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝐷𝐼𝐶))
15 simpr 484 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
1615simpld 494 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝐶𝐼𝑦))
17 simplr 769 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑦𝑃)
18 legid.b . . . . . . . . . . 11 (𝜑𝐵𝑃)
1918ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐵𝑃)
20 legid.a . . . . . . . . . . . 12 (𝜑𝐴𝑃)
2120ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐴𝑃)
223, 4, 5, 7, 12, 10, 17, 16tgbtwncom 28496 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝑦𝐼𝐶))
233, 4, 5, 7, 17, 10, 8, 12, 22, 14tgbtwnexch2 28504 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝑦𝐼𝐶))
243, 4, 5, 7, 19, 21tgbtwntriv1 28499 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐵 ∈ (𝐵𝐼𝐴))
2515simprd 495 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑦) = (𝐴 𝐵))
263, 4, 5, 7, 12, 17, 21, 19, 25tgcgrcomlr 28488 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑦 𝐶) = (𝐵 𝐴))
272eqcomd 2743 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑥) = (𝐴 𝐵))
283, 4, 5, 7, 12, 8, 21, 19, 27tgcgrcomlr 28488 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑥 𝐶) = (𝐵 𝐴))
293, 4, 5, 7, 17, 8, 12, 19, 19, 21, 23, 24, 26, 28tgcgrsub 28517 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑦 𝑥) = (𝐵 𝐵))
303, 4, 5, 7, 17, 8, 19, 29axtgcgrid 28471 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑦 = 𝑥)
3130oveq2d 7447 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶𝐼𝑦) = (𝐶𝐼𝑥))
3216, 31eleqtrd 2843 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝐶𝐼𝑥))
333, 4, 5, 7, 12, 10, 8, 32tgbtwncom 28496 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝑥𝐼𝐶))
343, 4, 5, 7, 8, 10, 12, 14, 33tgbtwnswapid 28500 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 = 𝐷)
3534oveq2d 7447 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑥) = (𝐶 𝐷))
362, 35eqtrd 2777 . . 3 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐴 𝐵) = (𝐶 𝐷))
37 legtri3.2 . . . . 5 (𝜑 → (𝐶 𝐷) (𝐴 𝐵))
38 legval.l . . . . . 6 = (≤G‘𝐺)
393, 4, 5, 38, 6, 11, 9, 20, 18legov2 28594 . . . . 5 (𝜑 → ((𝐶 𝐷) (𝐴 𝐵) ↔ ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))))
4037, 39mpbid 232 . . . 4 (𝜑 → ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
4140ad2antrr 726 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
4236, 41r19.29a 3162 . 2 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → (𝐴 𝐵) = (𝐶 𝐷))
43 legtri3.1 . . 3 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
443, 4, 5, 38, 6, 20, 18, 11, 9legov 28593 . . 3 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))))
4543, 44mpbid 232 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
4642, 45r19.29a 3162 1 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  distcds 17306  TarskiGcstrkg 28435  Itvcitv 28441  ≤Gcleg 28590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-trkgc 28456  df-trkgb 28457  df-trkgcb 28458  df-trkg 28461  df-cgrg 28519  df-leg 28591
This theorem is referenced by:  legeq  28601  legbtwn  28602  legso  28607
  Copyright terms: Public domain W3C validator