MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legtri3 Structured version   Visualization version   GIF version

Theorem legtri3 28535
Description: Equality from the less-than relationship. Proposition 5.9 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
legtri3.1 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
legtri3.2 (𝜑 → (𝐶 𝐷) (𝐴 𝐵))
Assertion
Ref Expression
legtri3 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))

Proof of Theorem legtri3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 775 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
21simprd 495 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐴 𝐵) = (𝐶 𝑥))
3 legval.p . . . . . 6 𝑃 = (Base‘𝐺)
4 legval.d . . . . . 6 = (dist‘𝐺)
5 legval.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 legval.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
76ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐺 ∈ TarskiG)
8 simp-4r 783 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥𝑃)
9 legtrd.d . . . . . . 7 (𝜑𝐷𝑃)
109ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷𝑃)
11 legtrd.c . . . . . . 7 (𝜑𝐶𝑃)
1211ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐶𝑃)
131simpld 494 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝐶𝐼𝐷))
143, 4, 5, 7, 12, 8, 10, 13tgbtwncom 28433 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝐷𝐼𝐶))
15 simpr 484 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
1615simpld 494 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝐶𝐼𝑦))
17 simplr 768 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑦𝑃)
18 legid.b . . . . . . . . . . 11 (𝜑𝐵𝑃)
1918ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐵𝑃)
20 legid.a . . . . . . . . . . . 12 (𝜑𝐴𝑃)
2120ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐴𝑃)
223, 4, 5, 7, 12, 10, 17, 16tgbtwncom 28433 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝑦𝐼𝐶))
233, 4, 5, 7, 17, 10, 8, 12, 22, 14tgbtwnexch2 28441 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 ∈ (𝑦𝐼𝐶))
243, 4, 5, 7, 19, 21tgbtwntriv1 28436 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐵 ∈ (𝐵𝐼𝐴))
2515simprd 495 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑦) = (𝐴 𝐵))
263, 4, 5, 7, 12, 17, 21, 19, 25tgcgrcomlr 28425 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑦 𝐶) = (𝐵 𝐴))
272eqcomd 2735 . . . . . . . . . . . 12 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑥) = (𝐴 𝐵))
283, 4, 5, 7, 12, 8, 21, 19, 27tgcgrcomlr 28425 . . . . . . . . . . 11 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑥 𝐶) = (𝐵 𝐴))
293, 4, 5, 7, 17, 8, 12, 19, 19, 21, 23, 24, 26, 28tgcgrsub 28454 . . . . . . . . . 10 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝑦 𝑥) = (𝐵 𝐵))
303, 4, 5, 7, 17, 8, 19, 29axtgcgrid 28408 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑦 = 𝑥)
3130oveq2d 7365 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶𝐼𝑦) = (𝐶𝐼𝑥))
3216, 31eleqtrd 2830 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝐶𝐼𝑥))
333, 4, 5, 7, 12, 10, 8, 32tgbtwncom 28433 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝐷 ∈ (𝑥𝐼𝐶))
343, 4, 5, 7, 8, 10, 12, 14, 33tgbtwnswapid 28437 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → 𝑥 = 𝐷)
3534oveq2d 7365 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐶 𝑥) = (𝐶 𝐷))
362, 35eqtrd 2764 . . 3 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))) → (𝐴 𝐵) = (𝐶 𝐷))
37 legtri3.2 . . . . 5 (𝜑 → (𝐶 𝐷) (𝐴 𝐵))
38 legval.l . . . . . 6 = (≤G‘𝐺)
393, 4, 5, 38, 6, 11, 9, 20, 18legov2 28531 . . . . 5 (𝜑 → ((𝐶 𝐷) (𝐴 𝐵) ↔ ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵))))
4037, 39mpbid 232 . . . 4 (𝜑 → ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
4140ad2antrr 726 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑦𝑃 (𝐷 ∈ (𝐶𝐼𝑦) ∧ (𝐶 𝑦) = (𝐴 𝐵)))
4236, 41r19.29a 3137 . 2 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → (𝐴 𝐵) = (𝐶 𝐷))
43 legtri3.1 . . 3 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
443, 4, 5, 38, 6, 20, 18, 11, 9legov 28530 . . 3 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))))
4543, 44mpbid 232 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
4642, 45r19.29a 3137 1 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  distcds 17170  TarskiGcstrkg 28372  Itvcitv 28378  ≤Gcleg 28527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-trkgc 28393  df-trkgb 28394  df-trkgcb 28395  df-trkg 28398  df-cgrg 28456  df-leg 28528
This theorem is referenced by:  legeq  28538  legbtwn  28539  legso  28544
  Copyright terms: Public domain W3C validator