![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwntriv1 | Structured version Visualization version GIF version |
Description: Betweenness always holds for the first endpoint. Theorem 3.3 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
tgbtwntriv1 | ⊢ (𝜑 → 𝐴 ∈ (𝐴𝐼𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tgbtwntriv2.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
6 | tgbtwntriv2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 1, 2, 3, 4, 5, 6 | tgbtwntriv2 28521 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐴)) |
8 | 1, 2, 3, 4, 5, 6, 6, 7 | tgbtwncom 28522 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐴𝐼𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 distcds 17316 TarskiGcstrkg 28461 Itvcitv 28467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5315 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-ov 7441 df-trkgc 28482 df-trkgb 28483 df-trkgcb 28484 df-trkg 28487 |
This theorem is referenced by: tgldim0itv 28538 legtri3 28624 leg0 28626 legbtwn 28628 ncolne1 28659 tglnne 28662 tglinerflx1 28667 mirinv 28700 miriso 28704 colmid 28722 krippenlem 28724 colperpex 28767 outpasch 28789 hlpasch 28790 |
Copyright terms: Public domain | W3C validator |