MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwntriv1 Structured version   Visualization version   GIF version

Theorem tgbtwntriv1 26263
Description: Betweenness always holds for the first endpoint. Theorem 3.3 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwntriv2.1 (𝜑𝐴𝑃)
tgbtwntriv2.2 (𝜑𝐵𝑃)
Assertion
Ref Expression
tgbtwntriv1 (𝜑𝐴 ∈ (𝐴𝐼𝐵))

Proof of Theorem tgbtwntriv1
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Base‘𝐺)
2 tkgeom.d . 2 = (dist‘𝐺)
3 tkgeom.i . 2 𝐼 = (Itv‘𝐺)
4 tkgeom.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgbtwntriv2.2 . 2 (𝜑𝐵𝑃)
6 tgbtwntriv2.1 . 2 (𝜑𝐴𝑃)
71, 2, 3, 4, 5, 6tgbtwntriv2 26259 . 2 (𝜑𝐴 ∈ (𝐵𝐼𝐴))
81, 2, 3, 4, 5, 6, 6, 7tgbtwncom 26260 1 (𝜑𝐴 ∈ (𝐴𝐼𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  cfv 6328  (class class class)co 7130  Basecbs 16461  distcds 16552  TarskiGcstrkg 26202  Itvcitv 26208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-nul 5183
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-iota 6287  df-fv 6336  df-ov 7133  df-trkgc 26220  df-trkgb 26221  df-trkgcb 26222  df-trkg 26225
This theorem is referenced by:  tgldim0itv  26276  legtri3  26362  leg0  26364  legbtwn  26366  ncolne1  26397  tglnne  26400  tglinerflx1  26405  mirinv  26438  miriso  26442  colmid  26460  krippenlem  26462  colperpex  26505  outpasch  26527  hlpasch  26528
  Copyright terms: Public domain W3C validator