MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwntriv1 Structured version   Visualization version   GIF version

Theorem tgbtwntriv1 28471
Description: Betweenness always holds for the first endpoint. Theorem 3.3 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwntriv2.1 (𝜑𝐴𝑃)
tgbtwntriv2.2 (𝜑𝐵𝑃)
Assertion
Ref Expression
tgbtwntriv1 (𝜑𝐴 ∈ (𝐴𝐼𝐵))

Proof of Theorem tgbtwntriv1
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Base‘𝐺)
2 tkgeom.d . 2 = (dist‘𝐺)
3 tkgeom.i . 2 𝐼 = (Itv‘𝐺)
4 tkgeom.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgbtwntriv2.2 . 2 (𝜑𝐵𝑃)
6 tgbtwntriv2.1 . 2 (𝜑𝐴𝑃)
71, 2, 3, 4, 5, 6tgbtwntriv2 28467 . 2 (𝜑𝐴 ∈ (𝐵𝐼𝐴))
81, 2, 3, 4, 5, 6, 6, 7tgbtwncom 28468 1 (𝜑𝐴 ∈ (𝐴𝐼𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  distcds 17205  TarskiGcstrkg 28407  Itvcitv 28413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-trkgc 28428  df-trkgb 28429  df-trkgcb 28430  df-trkg 28433
This theorem is referenced by:  tgldim0itv  28484  legtri3  28570  leg0  28572  legbtwn  28574  ncolne1  28605  tglnne  28608  tglinerflx1  28613  mirinv  28646  miriso  28650  colmid  28668  krippenlem  28670  colperpex  28713  outpasch  28735  hlpasch  28736
  Copyright terms: Public domain W3C validator