MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnintr Structured version   Visualization version   GIF version

Theorem tgbtwnintr 28012
Description: Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Baseβ€˜πΊ)
tkgeom.d βˆ’ = (distβ€˜πΊ)
tkgeom.i 𝐼 = (Itvβ€˜πΊ)
tkgeom.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgbtwnintr.1 (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgbtwnintr.2 (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgbtwnintr.3 (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgbtwnintr.4 (πœ‘ β†’ 𝐷 ∈ 𝑃)
tgbtwnintr.5 (πœ‘ β†’ 𝐴 ∈ (𝐡𝐼𝐷))
tgbtwnintr.6 (πœ‘ β†’ 𝐡 ∈ (𝐢𝐼𝐷))
Assertion
Ref Expression
tgbtwnintr (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))

Proof of Theorem tgbtwnintr
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Baseβ€˜πΊ)
2 tkgeom.d . . . 4 βˆ’ = (distβ€˜πΊ)
3 tkgeom.i . . . 4 𝐼 = (Itvβ€˜πΊ)
4 tkgeom.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54ad2antrr 723 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐢) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ 𝐺 ∈ TarskiG)
6 tgbtwnintr.2 . . . . 5 (πœ‘ β†’ 𝐡 ∈ 𝑃)
76ad2antrr 723 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐢) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ 𝐡 ∈ 𝑃)
8 simplr 766 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐢) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ π‘₯ ∈ 𝑃)
9 simprr 770 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐢) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ π‘₯ ∈ (𝐡𝐼𝐡))
101, 2, 3, 5, 7, 8, 9axtgbtwnid 27985 . . 3 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐢) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ 𝐡 = π‘₯)
11 simprl 768 . . 3 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐢) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ π‘₯ ∈ (𝐴𝐼𝐢))
1210, 11eqeltrd 2832 . 2 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐴𝐼𝐢) ∧ π‘₯ ∈ (𝐡𝐼𝐡))) β†’ 𝐡 ∈ (𝐴𝐼𝐢))
13 tgbtwnintr.3 . . 3 (πœ‘ β†’ 𝐢 ∈ 𝑃)
14 tgbtwnintr.4 . . 3 (πœ‘ β†’ 𝐷 ∈ 𝑃)
15 tgbtwnintr.1 . . 3 (πœ‘ β†’ 𝐴 ∈ 𝑃)
16 tgbtwnintr.5 . . 3 (πœ‘ β†’ 𝐴 ∈ (𝐡𝐼𝐷))
17 tgbtwnintr.6 . . 3 (πœ‘ β†’ 𝐡 ∈ (𝐢𝐼𝐷))
181, 2, 3, 4, 6, 13, 14, 15, 6, 16, 17axtgpasch 27986 . 2 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝑃 (π‘₯ ∈ (𝐴𝐼𝐢) ∧ π‘₯ ∈ (𝐡𝐼𝐡)))
1912, 18r19.29a 3161 1 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149  distcds 17211  TarskiGcstrkg 27946  Itvcitv 27952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415  df-trkgb 27968  df-trkg 27972
This theorem is referenced by:  tgbtwnexch3  28013  tgbtwnexch2  28015  tgbtwnconn1lem3  28093  tgbtwnconn3  28096  tgbtwnconn22  28098  tglineeltr  28150  mirconn  28197
  Copyright terms: Public domain W3C validator