MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnintr Structured version   Visualization version   GIF version

Theorem tgbtwnintr 26279
Description: Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnintr.5 (𝜑𝐴 ∈ (𝐵𝐼𝐷))
tgbtwnintr.6 (𝜑𝐵 ∈ (𝐶𝐼𝐷))
Assertion
Ref Expression
tgbtwnintr (𝜑𝐵 ∈ (𝐴𝐼𝐶))

Proof of Theorem tgbtwnintr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . 4 = (dist‘𝐺)
3 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 724 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐺 ∈ TarskiG)
6 tgbtwnintr.2 . . . . 5 (𝜑𝐵𝑃)
76ad2antrr 724 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵𝑃)
8 simplr 767 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥𝑃)
9 simprr 771 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐵𝐼𝐵))
101, 2, 3, 5, 7, 8, 9axtgbtwnid 26252 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 = 𝑥)
11 simprl 769 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐴𝐼𝐶))
1210, 11eqeltrd 2913 . 2 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 ∈ (𝐴𝐼𝐶))
13 tgbtwnintr.3 . . 3 (𝜑𝐶𝑃)
14 tgbtwnintr.4 . . 3 (𝜑𝐷𝑃)
15 tgbtwnintr.1 . . 3 (𝜑𝐴𝑃)
16 tgbtwnintr.5 . . 3 (𝜑𝐴 ∈ (𝐵𝐼𝐷))
17 tgbtwnintr.6 . . 3 (𝜑𝐵 ∈ (𝐶𝐼𝐷))
181, 2, 3, 4, 6, 13, 14, 15, 6, 16, 17axtgpasch 26253 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵)))
1912, 18r19.29a 3289 1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  Basecbs 16483  distcds 16574  TarskiGcstrkg 26216  Itvcitv 26222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-nul 5210
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-iota 6314  df-fv 6363  df-ov 7159  df-trkgb 26235  df-trkg 26239
This theorem is referenced by:  tgbtwnexch3  26280  tgbtwnexch2  26282  tgbtwnconn1lem3  26360  tgbtwnconn3  26363  tgbtwnconn22  26365  tglineeltr  26417  mirconn  26464
  Copyright terms: Public domain W3C validator