![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwnintr | Structured version Visualization version GIF version |
Description: Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnintr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnintr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnintr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnintr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgbtwnintr.5 | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐷)) |
tgbtwnintr.6 | ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐷)) |
Ref | Expression |
---|---|
tgbtwnintr | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐺 ∈ TarskiG) |
6 | tgbtwnintr.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | 6 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 ∈ 𝑃) |
8 | simplr 769 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ 𝑃) | |
9 | simprr 773 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐵𝐼𝐵)) | |
10 | 1, 2, 3, 5, 7, 8, 9 | axtgbtwnid 28489 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 = 𝑥) |
11 | simprl 771 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐴𝐼𝐶)) | |
12 | 10, 11 | eqeltrd 2839 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 ∈ (𝐴𝐼𝐶)) |
13 | tgbtwnintr.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
14 | tgbtwnintr.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
15 | tgbtwnintr.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
16 | tgbtwnintr.5 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐷)) | |
17 | tgbtwnintr.6 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐷)) | |
18 | 1, 2, 3, 4, 6, 13, 14, 15, 6, 16, 17 | axtgpasch 28490 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) |
19 | 12, 18 | r19.29a 3160 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 distcds 17307 TarskiGcstrkg 28450 Itvcitv 28456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-trkgb 28472 df-trkg 28476 |
This theorem is referenced by: tgbtwnexch3 28517 tgbtwnexch2 28519 tgbtwnconn1lem3 28597 tgbtwnconn3 28600 tgbtwnconn22 28602 tglineeltr 28654 mirconn 28701 |
Copyright terms: Public domain | W3C validator |