MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnintr Structured version   Visualization version   GIF version

Theorem tgbtwnintr 25805
Description: Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnintr.5 (𝜑𝐴 ∈ (𝐵𝐼𝐷))
tgbtwnintr.6 (𝜑𝐵 ∈ (𝐶𝐼𝐷))
Assertion
Ref Expression
tgbtwnintr (𝜑𝐵 ∈ (𝐴𝐼𝐶))

Proof of Theorem tgbtwnintr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . 4 = (dist‘𝐺)
3 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 719 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐺 ∈ TarskiG)
6 tgbtwnintr.2 . . . . 5 (𝜑𝐵𝑃)
76ad2antrr 719 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵𝑃)
8 simplr 787 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥𝑃)
9 simprr 791 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐵𝐼𝐵))
101, 2, 3, 5, 7, 8, 9axtgbtwnid 25778 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 = 𝑥)
11 simprl 789 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐴𝐼𝐶))
1210, 11eqeltrd 2906 . 2 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 ∈ (𝐴𝐼𝐶))
13 tgbtwnintr.3 . . 3 (𝜑𝐶𝑃)
14 tgbtwnintr.4 . . 3 (𝜑𝐷𝑃)
15 tgbtwnintr.1 . . 3 (𝜑𝐴𝑃)
16 tgbtwnintr.5 . . 3 (𝜑𝐴 ∈ (𝐵𝐼𝐷))
17 tgbtwnintr.6 . . 3 (𝜑𝐵 ∈ (𝐶𝐼𝐷))
181, 2, 3, 4, 6, 13, 14, 15, 6, 16, 17axtgpasch 25779 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵)))
1912, 18r19.29a 3288 1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  cfv 6123  (class class class)co 6905  Basecbs 16222  distcds 16314  TarskiGcstrkg 25742  Itvcitv 25748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-nul 5013
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-iota 6086  df-fv 6131  df-ov 6908  df-trkgb 25761  df-trkg 25765
This theorem is referenced by:  tgbtwnexch3  25806  tgbtwnexch2  25808  tgbtwnconn1lem3  25886  tgbtwnconn3  25889  tgbtwnconn22  25891  tglineeltr  25943  mirconn  25990
  Copyright terms: Public domain W3C validator