![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwnintr | Structured version Visualization version GIF version |
Description: Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | β’ π = (BaseβπΊ) |
tkgeom.d | β’ β = (distβπΊ) |
tkgeom.i | β’ πΌ = (ItvβπΊ) |
tkgeom.g | β’ (π β πΊ β TarskiG) |
tgbtwnintr.1 | β’ (π β π΄ β π) |
tgbtwnintr.2 | β’ (π β π΅ β π) |
tgbtwnintr.3 | β’ (π β πΆ β π) |
tgbtwnintr.4 | β’ (π β π· β π) |
tgbtwnintr.5 | β’ (π β π΄ β (π΅πΌπ·)) |
tgbtwnintr.6 | β’ (π β π΅ β (πΆπΌπ·)) |
Ref | Expression |
---|---|
tgbtwnintr | β’ (π β π΅ β (π΄πΌπΆ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . . 4 β’ π = (BaseβπΊ) | |
2 | tkgeom.d | . . . 4 β’ β = (distβπΊ) | |
3 | tkgeom.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
4 | tkgeom.g | . . . . 5 β’ (π β πΊ β TarskiG) | |
5 | 4 | ad2antrr 723 | . . . 4 β’ (((π β§ π₯ β π) β§ (π₯ β (π΄πΌπΆ) β§ π₯ β (π΅πΌπ΅))) β πΊ β TarskiG) |
6 | tgbtwnintr.2 | . . . . 5 β’ (π β π΅ β π) | |
7 | 6 | ad2antrr 723 | . . . 4 β’ (((π β§ π₯ β π) β§ (π₯ β (π΄πΌπΆ) β§ π₯ β (π΅πΌπ΅))) β π΅ β π) |
8 | simplr 766 | . . . 4 β’ (((π β§ π₯ β π) β§ (π₯ β (π΄πΌπΆ) β§ π₯ β (π΅πΌπ΅))) β π₯ β π) | |
9 | simprr 770 | . . . 4 β’ (((π β§ π₯ β π) β§ (π₯ β (π΄πΌπΆ) β§ π₯ β (π΅πΌπ΅))) β π₯ β (π΅πΌπ΅)) | |
10 | 1, 2, 3, 5, 7, 8, 9 | axtgbtwnid 27985 | . . 3 β’ (((π β§ π₯ β π) β§ (π₯ β (π΄πΌπΆ) β§ π₯ β (π΅πΌπ΅))) β π΅ = π₯) |
11 | simprl 768 | . . 3 β’ (((π β§ π₯ β π) β§ (π₯ β (π΄πΌπΆ) β§ π₯ β (π΅πΌπ΅))) β π₯ β (π΄πΌπΆ)) | |
12 | 10, 11 | eqeltrd 2832 | . 2 β’ (((π β§ π₯ β π) β§ (π₯ β (π΄πΌπΆ) β§ π₯ β (π΅πΌπ΅))) β π΅ β (π΄πΌπΆ)) |
13 | tgbtwnintr.3 | . . 3 β’ (π β πΆ β π) | |
14 | tgbtwnintr.4 | . . 3 β’ (π β π· β π) | |
15 | tgbtwnintr.1 | . . 3 β’ (π β π΄ β π) | |
16 | tgbtwnintr.5 | . . 3 β’ (π β π΄ β (π΅πΌπ·)) | |
17 | tgbtwnintr.6 | . . 3 β’ (π β π΅ β (πΆπΌπ·)) | |
18 | 1, 2, 3, 4, 6, 13, 14, 15, 6, 16, 17 | axtgpasch 27986 | . 2 β’ (π β βπ₯ β π (π₯ β (π΄πΌπΆ) β§ π₯ β (π΅πΌπ΅))) |
19 | 12, 18 | r19.29a 3161 | 1 β’ (π β π΅ β (π΄πΌπΆ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βcfv 6543 (class class class)co 7412 Basecbs 17149 distcds 17211 TarskiGcstrkg 27946 Itvcitv 27952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 df-trkgb 27968 df-trkg 27972 |
This theorem is referenced by: tgbtwnexch3 28013 tgbtwnexch2 28015 tgbtwnconn1lem3 28093 tgbtwnconn3 28096 tgbtwnconn22 28098 tglineeltr 28150 mirconn 28197 |
Copyright terms: Public domain | W3C validator |