MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnintr Structured version   Visualization version   GIF version

Theorem tgbtwnintr 28477
Description: Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnintr.5 (𝜑𝐴 ∈ (𝐵𝐼𝐷))
tgbtwnintr.6 (𝜑𝐵 ∈ (𝐶𝐼𝐷))
Assertion
Ref Expression
tgbtwnintr (𝜑𝐵 ∈ (𝐴𝐼𝐶))

Proof of Theorem tgbtwnintr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . 4 = (dist‘𝐺)
3 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 726 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐺 ∈ TarskiG)
6 tgbtwnintr.2 . . . . 5 (𝜑𝐵𝑃)
76ad2antrr 726 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵𝑃)
8 simplr 768 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥𝑃)
9 simprr 772 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐵𝐼𝐵))
101, 2, 3, 5, 7, 8, 9axtgbtwnid 28450 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 = 𝑥)
11 simprl 770 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐴𝐼𝐶))
1210, 11eqeltrd 2835 . 2 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 ∈ (𝐴𝐼𝐶))
13 tgbtwnintr.3 . . 3 (𝜑𝐶𝑃)
14 tgbtwnintr.4 . . 3 (𝜑𝐷𝑃)
15 tgbtwnintr.1 . . 3 (𝜑𝐴𝑃)
16 tgbtwnintr.5 . . 3 (𝜑𝐴 ∈ (𝐵𝐼𝐷))
17 tgbtwnintr.6 . . 3 (𝜑𝐵 ∈ (𝐶𝐼𝐷))
181, 2, 3, 4, 6, 13, 14, 15, 6, 16, 17axtgpasch 28451 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵)))
1912, 18r19.29a 3149 1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  distcds 17285  TarskiGcstrkg 28411  Itvcitv 28417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-trkgb 28433  df-trkg 28437
This theorem is referenced by:  tgbtwnexch3  28478  tgbtwnexch2  28480  tgbtwnconn1lem3  28558  tgbtwnconn3  28561  tgbtwnconn22  28563  tglineeltr  28615  mirconn  28662
  Copyright terms: Public domain W3C validator