MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgreqb Structured version   Visualization version   GIF version

Theorem tgcgreqb 28465
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomlr.a (𝜑𝐴𝑃)
tgcgrcomlr.b (𝜑𝐵𝑃)
tgcgrcomlr.c (𝜑𝐶𝑃)
tgcgrcomlr.d (𝜑𝐷𝑃)
tgcgrcomlr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Assertion
Ref Expression
tgcgreqb (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))

Proof of Theorem tgcgreqb
StepHypRef Expression
1 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
2 tkgeom.d . . 3 = (dist‘𝐺)
3 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
6 tgcgrcomlr.c . . . 4 (𝜑𝐶𝑃)
76adantr 480 . . 3 ((𝜑𝐴 = 𝐵) → 𝐶𝑃)
8 tgcgrcomlr.d . . . 4 (𝜑𝐷𝑃)
98adantr 480 . . 3 ((𝜑𝐴 = 𝐵) → 𝐷𝑃)
10 tgcgrcomlr.b . . . 4 (𝜑𝐵𝑃)
1110adantr 480 . . 3 ((𝜑𝐴 = 𝐵) → 𝐵𝑃)
12 tgcgrcomlr.6 . . . . 5 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
1312adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → (𝐴 𝐵) = (𝐶 𝐷))
14 simpr 484 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
1514oveq1d 7425 . . . 4 ((𝜑𝐴 = 𝐵) → (𝐴 𝐵) = (𝐵 𝐵))
1613, 15eqtr3d 2773 . . 3 ((𝜑𝐴 = 𝐵) → (𝐶 𝐷) = (𝐵 𝐵))
171, 2, 3, 5, 7, 9, 11, 16axtgcgrid 28447 . 2 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐷)
184adantr 480 . . 3 ((𝜑𝐶 = 𝐷) → 𝐺 ∈ TarskiG)
19 tgcgrcomlr.a . . . 4 (𝜑𝐴𝑃)
2019adantr 480 . . 3 ((𝜑𝐶 = 𝐷) → 𝐴𝑃)
2110adantr 480 . . 3 ((𝜑𝐶 = 𝐷) → 𝐵𝑃)
228adantr 480 . . 3 ((𝜑𝐶 = 𝐷) → 𝐷𝑃)
2312adantr 480 . . . 4 ((𝜑𝐶 = 𝐷) → (𝐴 𝐵) = (𝐶 𝐷))
24 simpr 484 . . . . 5 ((𝜑𝐶 = 𝐷) → 𝐶 = 𝐷)
2524oveq1d 7425 . . . 4 ((𝜑𝐶 = 𝐷) → (𝐶 𝐷) = (𝐷 𝐷))
2623, 25eqtrd 2771 . . 3 ((𝜑𝐶 = 𝐷) → (𝐴 𝐵) = (𝐷 𝐷))
271, 2, 3, 18, 20, 21, 22, 26axtgcgrid 28447 . 2 ((𝜑𝐶 = 𝐷) → 𝐴 = 𝐵)
2817, 27impbida 800 1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  distcds 17285  TarskiGcstrkg 28411  Itvcitv 28417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-trkgc 28432  df-trkg 28437
This theorem is referenced by:  tgcgreq  28466  tgcgrneq  28467
  Copyright terms: Public domain W3C validator