|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > tgcgreqb | Structured version Visualization version GIF version | ||
| Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.) | 
| Ref | Expression | 
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) | 
| tkgeom.d | ⊢ − = (dist‘𝐺) | 
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) | 
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| tgcgrcomlr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| tgcgrcomlr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| tgcgrcomlr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) | 
| tgcgrcomlr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) | 
| tgcgrcomlr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | 
| Ref | Expression | 
|---|---|
| tgcgreqb | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐺 ∈ TarskiG) | 
| 6 | tgcgrcomlr.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 ∈ 𝑃) | 
| 8 | tgcgrcomlr.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐷 ∈ 𝑃) | 
| 10 | tgcgrcomlr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝑃) | 
| 12 | tgcgrcomlr.6 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | 
| 14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
| 15 | 14 | oveq1d 7447 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴 − 𝐵) = (𝐵 − 𝐵)) | 
| 16 | 13, 15 | eqtr3d 2778 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐶 − 𝐷) = (𝐵 − 𝐵)) | 
| 17 | 1, 2, 3, 5, 7, 9, 11, 16 | axtgcgrid 28472 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐷) | 
| 18 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐺 ∈ TarskiG) | 
| 19 | tgcgrcomlr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐴 ∈ 𝑃) | 
| 21 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐵 ∈ 𝑃) | 
| 22 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐷 ∈ 𝑃) | 
| 23 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | 
| 24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐶 = 𝐷) | |
| 25 | 24 | oveq1d 7447 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → (𝐶 − 𝐷) = (𝐷 − 𝐷)) | 
| 26 | 23, 25 | eqtrd 2776 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → (𝐴 − 𝐵) = (𝐷 − 𝐷)) | 
| 27 | 1, 2, 3, 18, 20, 21, 22, 26 | axtgcgrid 28472 | . 2 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐴 = 𝐵) | 
| 28 | 17, 27 | impbida 800 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 distcds 17307 TarskiGcstrkg 28436 Itvcitv 28442 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-trkgc 28457 df-trkg 28462 | 
| This theorem is referenced by: tgcgreq 28491 tgcgrneq 28492 | 
| Copyright terms: Public domain | W3C validator |