| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgcgreqb | Structured version Visualization version GIF version | ||
| Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgcgrcomlr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgcgrcomlr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgcgrcomlr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgcgrcomlr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgcgrcomlr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
| Ref | Expression |
|---|---|
| tgcgreqb | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐺 ∈ TarskiG) |
| 6 | tgcgrcomlr.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 ∈ 𝑃) |
| 8 | tgcgrcomlr.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐷 ∈ 𝑃) |
| 10 | tgcgrcomlr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝑃) |
| 12 | tgcgrcomlr.6 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
| 15 | 14 | oveq1d 7425 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴 − 𝐵) = (𝐵 − 𝐵)) |
| 16 | 13, 15 | eqtr3d 2773 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐶 − 𝐷) = (𝐵 − 𝐵)) |
| 17 | 1, 2, 3, 5, 7, 9, 11, 16 | axtgcgrid 28447 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐷) |
| 18 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐺 ∈ TarskiG) |
| 19 | tgcgrcomlr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐴 ∈ 𝑃) |
| 21 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐵 ∈ 𝑃) |
| 22 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐷 ∈ 𝑃) |
| 23 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
| 24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐶 = 𝐷) | |
| 25 | 24 | oveq1d 7425 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → (𝐶 − 𝐷) = (𝐷 − 𝐷)) |
| 26 | 23, 25 | eqtrd 2771 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → (𝐴 − 𝐵) = (𝐷 − 𝐷)) |
| 27 | 1, 2, 3, 18, 20, 21, 22, 26 | axtgcgrid 28447 | . 2 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐴 = 𝐵) |
| 28 | 17, 27 | impbida 800 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 distcds 17285 TarskiGcstrkg 28411 Itvcitv 28417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-trkgc 28432 df-trkg 28437 |
| This theorem is referenced by: tgcgreq 28466 tgcgrneq 28467 |
| Copyright terms: Public domain | W3C validator |