MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgreqb Structured version   Visualization version   GIF version

Theorem tgcgreqb 28490
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomlr.a (𝜑𝐴𝑃)
tgcgrcomlr.b (𝜑𝐵𝑃)
tgcgrcomlr.c (𝜑𝐶𝑃)
tgcgrcomlr.d (𝜑𝐷𝑃)
tgcgrcomlr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Assertion
Ref Expression
tgcgreqb (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))

Proof of Theorem tgcgreqb
StepHypRef Expression
1 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
2 tkgeom.d . . 3 = (dist‘𝐺)
3 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
6 tgcgrcomlr.c . . . 4 (𝜑𝐶𝑃)
76adantr 480 . . 3 ((𝜑𝐴 = 𝐵) → 𝐶𝑃)
8 tgcgrcomlr.d . . . 4 (𝜑𝐷𝑃)
98adantr 480 . . 3 ((𝜑𝐴 = 𝐵) → 𝐷𝑃)
10 tgcgrcomlr.b . . . 4 (𝜑𝐵𝑃)
1110adantr 480 . . 3 ((𝜑𝐴 = 𝐵) → 𝐵𝑃)
12 tgcgrcomlr.6 . . . . 5 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
1312adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → (𝐴 𝐵) = (𝐶 𝐷))
14 simpr 484 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
1514oveq1d 7447 . . . 4 ((𝜑𝐴 = 𝐵) → (𝐴 𝐵) = (𝐵 𝐵))
1613, 15eqtr3d 2778 . . 3 ((𝜑𝐴 = 𝐵) → (𝐶 𝐷) = (𝐵 𝐵))
171, 2, 3, 5, 7, 9, 11, 16axtgcgrid 28472 . 2 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐷)
184adantr 480 . . 3 ((𝜑𝐶 = 𝐷) → 𝐺 ∈ TarskiG)
19 tgcgrcomlr.a . . . 4 (𝜑𝐴𝑃)
2019adantr 480 . . 3 ((𝜑𝐶 = 𝐷) → 𝐴𝑃)
2110adantr 480 . . 3 ((𝜑𝐶 = 𝐷) → 𝐵𝑃)
228adantr 480 . . 3 ((𝜑𝐶 = 𝐷) → 𝐷𝑃)
2312adantr 480 . . . 4 ((𝜑𝐶 = 𝐷) → (𝐴 𝐵) = (𝐶 𝐷))
24 simpr 484 . . . . 5 ((𝜑𝐶 = 𝐷) → 𝐶 = 𝐷)
2524oveq1d 7447 . . . 4 ((𝜑𝐶 = 𝐷) → (𝐶 𝐷) = (𝐷 𝐷))
2623, 25eqtrd 2776 . . 3 ((𝜑𝐶 = 𝐷) → (𝐴 𝐵) = (𝐷 𝐷))
271, 2, 3, 18, 20, 21, 22, 26axtgcgrid 28472 . 2 ((𝜑𝐶 = 𝐷) → 𝐴 = 𝐵)
2817, 27impbida 800 1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  Basecbs 17248  distcds 17307  TarskiGcstrkg 28436  Itvcitv 28442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-nul 5305
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-ov 7435  df-trkgc 28457  df-trkg 28462
This theorem is referenced by:  tgcgreq  28491  tgcgrneq  28492
  Copyright terms: Public domain W3C validator