MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgreqb Structured version   Visualization version   GIF version

Theorem tgcgreqb 27987
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Baseβ€˜πΊ)
tkgeom.d βˆ’ = (distβ€˜πΊ)
tkgeom.i 𝐼 = (Itvβ€˜πΊ)
tkgeom.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgcgrcomlr.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgcgrcomlr.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgcgrcomlr.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgcgrcomlr.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
tgcgrcomlr.6 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
Assertion
Ref Expression
tgcgreqb (πœ‘ β†’ (𝐴 = 𝐡 ↔ 𝐢 = 𝐷))

Proof of Theorem tgcgreqb
StepHypRef Expression
1 tkgeom.p . . 3 𝑃 = (Baseβ€˜πΊ)
2 tkgeom.d . . 3 βˆ’ = (distβ€˜πΊ)
3 tkgeom.i . . 3 𝐼 = (Itvβ€˜πΊ)
4 tkgeom.g . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54adantr 481 . . 3 ((πœ‘ ∧ 𝐴 = 𝐡) β†’ 𝐺 ∈ TarskiG)
6 tgcgrcomlr.c . . . 4 (πœ‘ β†’ 𝐢 ∈ 𝑃)
76adantr 481 . . 3 ((πœ‘ ∧ 𝐴 = 𝐡) β†’ 𝐢 ∈ 𝑃)
8 tgcgrcomlr.d . . . 4 (πœ‘ β†’ 𝐷 ∈ 𝑃)
98adantr 481 . . 3 ((πœ‘ ∧ 𝐴 = 𝐡) β†’ 𝐷 ∈ 𝑃)
10 tgcgrcomlr.b . . . 4 (πœ‘ β†’ 𝐡 ∈ 𝑃)
1110adantr 481 . . 3 ((πœ‘ ∧ 𝐴 = 𝐡) β†’ 𝐡 ∈ 𝑃)
12 tgcgrcomlr.6 . . . . 5 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
1312adantr 481 . . . 4 ((πœ‘ ∧ 𝐴 = 𝐡) β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
14 simpr 485 . . . . 5 ((πœ‘ ∧ 𝐴 = 𝐡) β†’ 𝐴 = 𝐡)
1514oveq1d 7426 . . . 4 ((πœ‘ ∧ 𝐴 = 𝐡) β†’ (𝐴 βˆ’ 𝐡) = (𝐡 βˆ’ 𝐡))
1613, 15eqtr3d 2774 . . 3 ((πœ‘ ∧ 𝐴 = 𝐡) β†’ (𝐢 βˆ’ 𝐷) = (𝐡 βˆ’ 𝐡))
171, 2, 3, 5, 7, 9, 11, 16axtgcgrid 27969 . 2 ((πœ‘ ∧ 𝐴 = 𝐡) β†’ 𝐢 = 𝐷)
184adantr 481 . . 3 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐺 ∈ TarskiG)
19 tgcgrcomlr.a . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑃)
2019adantr 481 . . 3 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐴 ∈ 𝑃)
2110adantr 481 . . 3 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐡 ∈ 𝑃)
228adantr 481 . . 3 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐷 ∈ 𝑃)
2312adantr 481 . . . 4 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
24 simpr 485 . . . . 5 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐢 = 𝐷)
2524oveq1d 7426 . . . 4 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ (𝐢 βˆ’ 𝐷) = (𝐷 βˆ’ 𝐷))
2623, 25eqtrd 2772 . . 3 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐷))
271, 2, 3, 18, 20, 21, 22, 26axtgcgrid 27969 . 2 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐴 = 𝐡)
2817, 27impbida 799 1 (πœ‘ β†’ (𝐴 = 𝐡 ↔ 𝐢 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  distcds 17210  TarskiGcstrkg 27933  Itvcitv 27939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414  df-trkgc 27954  df-trkg 27959
This theorem is referenced by:  tgcgreq  27988  tgcgrneq  27989
  Copyright terms: Public domain W3C validator