| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgcgrneq | Structured version Visualization version GIF version | ||
| Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgcgrcomlr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgcgrcomlr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgcgrcomlr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgcgrcomlr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgcgrcomlr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
| tgcgrneq.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| tgcgrneq | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcgrneq.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 4 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | tkgeom.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | tgcgrcomlr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | tgcgrcomlr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | tgcgrcomlr.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 9 | tgcgrcomlr.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 10 | tgcgrcomlr.6 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | tgcgreqb 28461 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
| 12 | 11 | necon3bid 2969 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| 13 | 1, 12 | mpbid 232 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 distcds 17205 TarskiGcstrkg 28407 Itvcitv 28413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-trkgc 28428 df-trkg 28433 |
| This theorem is referenced by: hlcgrex 28596 midexlem 28672 footexALT 28698 footexlem1 28699 footexlem2 28700 mideulem2 28714 opphllem3 28729 trgcopy 28784 iscgra1 28790 cgrane1 28792 cgrane2 28793 cgrcgra 28801 flatcgra 28804 cgrg3col4 28833 tgsas2 28836 tgsas3 28837 tgasa1 28838 |
| Copyright terms: Public domain | W3C validator |