MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrneq Structured version   Visualization version   GIF version

Theorem tgcgrneq 27734
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Baseβ€˜πΊ)
tkgeom.d βˆ’ = (distβ€˜πΊ)
tkgeom.i 𝐼 = (Itvβ€˜πΊ)
tkgeom.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgcgrcomlr.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgcgrcomlr.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgcgrcomlr.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgcgrcomlr.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
tgcgrcomlr.6 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
tgcgrneq.1 (πœ‘ β†’ 𝐴 β‰  𝐡)
Assertion
Ref Expression
tgcgrneq (πœ‘ β†’ 𝐢 β‰  𝐷)

Proof of Theorem tgcgrneq
StepHypRef Expression
1 tgcgrneq.1 . 2 (πœ‘ β†’ 𝐴 β‰  𝐡)
2 tkgeom.p . . . 4 𝑃 = (Baseβ€˜πΊ)
3 tkgeom.d . . . 4 βˆ’ = (distβ€˜πΊ)
4 tkgeom.i . . . 4 𝐼 = (Itvβ€˜πΊ)
5 tkgeom.g . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiG)
6 tgcgrcomlr.a . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑃)
7 tgcgrcomlr.b . . . 4 (πœ‘ β†’ 𝐡 ∈ 𝑃)
8 tgcgrcomlr.c . . . 4 (πœ‘ β†’ 𝐢 ∈ 𝑃)
9 tgcgrcomlr.d . . . 4 (πœ‘ β†’ 𝐷 ∈ 𝑃)
10 tgcgrcomlr.6 . . . 4 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
112, 3, 4, 5, 6, 7, 8, 9, 10tgcgreqb 27732 . . 3 (πœ‘ β†’ (𝐴 = 𝐡 ↔ 𝐢 = 𝐷))
1211necon3bid 2986 . 2 (πœ‘ β†’ (𝐴 β‰  𝐡 ↔ 𝐢 β‰  𝐷))
131, 12mpbid 231 1 (πœ‘ β†’ 𝐢 β‰  𝐷)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  distcds 17206  TarskiGcstrkg 27678  Itvcitv 27684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-trkgc 27699  df-trkg 27704
This theorem is referenced by:  hlcgrex  27867  midexlem  27943  footexALT  27969  footexlem1  27970  footexlem2  27971  mideulem2  27985  opphllem3  28000  trgcopy  28055  iscgra1  28061  cgrane1  28063  cgrane2  28064  cgrcgra  28072  flatcgra  28075  cgrg3col4  28104  tgsas2  28107  tgsas3  28108  tgasa1  28109
  Copyright terms: Public domain W3C validator