MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrneq Structured version   Visualization version   GIF version

Theorem tgcgrneq 25794
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomlr.a (𝜑𝐴𝑃)
tgcgrcomlr.b (𝜑𝐵𝑃)
tgcgrcomlr.c (𝜑𝐶𝑃)
tgcgrcomlr.d (𝜑𝐷𝑃)
tgcgrcomlr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
tgcgrneq.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
tgcgrneq (𝜑𝐶𝐷)

Proof of Theorem tgcgrneq
StepHypRef Expression
1 tgcgrneq.1 . 2 (𝜑𝐴𝐵)
2 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
3 tkgeom.d . . . 4 = (dist‘𝐺)
4 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
6 tgcgrcomlr.a . . . 4 (𝜑𝐴𝑃)
7 tgcgrcomlr.b . . . 4 (𝜑𝐵𝑃)
8 tgcgrcomlr.c . . . 4 (𝜑𝐶𝑃)
9 tgcgrcomlr.d . . . 4 (𝜑𝐷𝑃)
10 tgcgrcomlr.6 . . . 4 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
112, 3, 4, 5, 6, 7, 8, 9, 10tgcgreqb 25792 . . 3 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
1211necon3bid 3042 . 2 (𝜑 → (𝐴𝐵𝐶𝐷))
131, 12mpbid 224 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  wne 2998  cfv 6122  (class class class)co 6904  Basecbs 16221  distcds 16313  TarskiGcstrkg 25741  Itvcitv 25747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-nul 5012
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-rab 3125  df-v 3415  df-sbc 3662  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-br 4873  df-iota 6085  df-fv 6130  df-ov 6907  df-trkgc 25759  df-trkg 25764
This theorem is referenced by:  hlcgrex  25927  midexlem  26003  footex  26029  mideulem2  26042  opphllem3  26057  trgcopy  26112  iscgra1  26118  cgrane1  26120  cgrane2  26121  cgrcgra  26129  cgrg3col4  26151  tgsas2  26154  tgsas3  26155  tgasa1  26156  tgsss1  26158
  Copyright terms: Public domain W3C validator