MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrneq Structured version   Visualization version   GIF version

Theorem tgcgrneq 28428
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomlr.a (𝜑𝐴𝑃)
tgcgrcomlr.b (𝜑𝐵𝑃)
tgcgrcomlr.c (𝜑𝐶𝑃)
tgcgrcomlr.d (𝜑𝐷𝑃)
tgcgrcomlr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
tgcgrneq.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
tgcgrneq (𝜑𝐶𝐷)

Proof of Theorem tgcgrneq
StepHypRef Expression
1 tgcgrneq.1 . 2 (𝜑𝐴𝐵)
2 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
3 tkgeom.d . . . 4 = (dist‘𝐺)
4 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
6 tgcgrcomlr.a . . . 4 (𝜑𝐴𝑃)
7 tgcgrcomlr.b . . . 4 (𝜑𝐵𝑃)
8 tgcgrcomlr.c . . . 4 (𝜑𝐶𝑃)
9 tgcgrcomlr.d . . . 4 (𝜑𝐷𝑃)
10 tgcgrcomlr.6 . . . 4 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
112, 3, 4, 5, 6, 7, 8, 9, 10tgcgreqb 28426 . . 3 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
1211necon3bid 2969 . 2 (𝜑 → (𝐴𝐵𝐶𝐷))
131, 12mpbid 232 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  cfv 6482  (class class class)co 7349  Basecbs 17120  distcds 17170  TarskiGcstrkg 28372  Itvcitv 28378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5245
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-ov 7352  df-trkgc 28393  df-trkg 28398
This theorem is referenced by:  hlcgrex  28561  midexlem  28637  footexALT  28663  footexlem1  28664  footexlem2  28665  mideulem2  28679  opphllem3  28694  trgcopy  28749  iscgra1  28755  cgrane1  28757  cgrane2  28758  cgrcgra  28766  flatcgra  28769  cgrg3col4  28798  tgsas2  28801  tgsas3  28802  tgasa1  28803
  Copyright terms: Public domain W3C validator