MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrneq Structured version   Visualization version   GIF version

Theorem tgcgrneq 27772
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Baseβ€˜πΊ)
tkgeom.d βˆ’ = (distβ€˜πΊ)
tkgeom.i 𝐼 = (Itvβ€˜πΊ)
tkgeom.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgcgrcomlr.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgcgrcomlr.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgcgrcomlr.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgcgrcomlr.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
tgcgrcomlr.6 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
tgcgrneq.1 (πœ‘ β†’ 𝐴 β‰  𝐡)
Assertion
Ref Expression
tgcgrneq (πœ‘ β†’ 𝐢 β‰  𝐷)

Proof of Theorem tgcgrneq
StepHypRef Expression
1 tgcgrneq.1 . 2 (πœ‘ β†’ 𝐴 β‰  𝐡)
2 tkgeom.p . . . 4 𝑃 = (Baseβ€˜πΊ)
3 tkgeom.d . . . 4 βˆ’ = (distβ€˜πΊ)
4 tkgeom.i . . . 4 𝐼 = (Itvβ€˜πΊ)
5 tkgeom.g . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiG)
6 tgcgrcomlr.a . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑃)
7 tgcgrcomlr.b . . . 4 (πœ‘ β†’ 𝐡 ∈ 𝑃)
8 tgcgrcomlr.c . . . 4 (πœ‘ β†’ 𝐢 ∈ 𝑃)
9 tgcgrcomlr.d . . . 4 (πœ‘ β†’ 𝐷 ∈ 𝑃)
10 tgcgrcomlr.6 . . . 4 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
112, 3, 4, 5, 6, 7, 8, 9, 10tgcgreqb 27770 . . 3 (πœ‘ β†’ (𝐴 = 𝐡 ↔ 𝐢 = 𝐷))
1211necon3bid 2985 . 2 (πœ‘ β†’ (𝐴 β‰  𝐡 ↔ 𝐢 β‰  𝐷))
131, 12mpbid 231 1 (πœ‘ β†’ 𝐢 β‰  𝐷)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  β€˜cfv 6543  (class class class)co 7411  Basecbs 17146  distcds 17208  TarskiGcstrkg 27716  Itvcitv 27722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414  df-trkgc 27737  df-trkg 27742
This theorem is referenced by:  hlcgrex  27905  midexlem  27981  footexALT  28007  footexlem1  28008  footexlem2  28009  mideulem2  28023  opphllem3  28038  trgcopy  28093  iscgra1  28099  cgrane1  28101  cgrane2  28102  cgrcgra  28110  flatcgra  28113  cgrg3col4  28142  tgsas2  28145  tgsas3  28146  tgasa1  28147
  Copyright terms: Public domain W3C validator