MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrneq Structured version   Visualization version   GIF version

Theorem tgcgrneq 28509
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomlr.a (𝜑𝐴𝑃)
tgcgrcomlr.b (𝜑𝐵𝑃)
tgcgrcomlr.c (𝜑𝐶𝑃)
tgcgrcomlr.d (𝜑𝐷𝑃)
tgcgrcomlr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
tgcgrneq.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
tgcgrneq (𝜑𝐶𝐷)

Proof of Theorem tgcgrneq
StepHypRef Expression
1 tgcgrneq.1 . 2 (𝜑𝐴𝐵)
2 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
3 tkgeom.d . . . 4 = (dist‘𝐺)
4 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
6 tgcgrcomlr.a . . . 4 (𝜑𝐴𝑃)
7 tgcgrcomlr.b . . . 4 (𝜑𝐵𝑃)
8 tgcgrcomlr.c . . . 4 (𝜑𝐶𝑃)
9 tgcgrcomlr.d . . . 4 (𝜑𝐷𝑃)
10 tgcgrcomlr.6 . . . 4 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
112, 3, 4, 5, 6, 7, 8, 9, 10tgcgreqb 28507 . . 3 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
1211necon3bid 2991 . 2 (𝜑 → (𝐴𝐵𝐶𝐷))
131, 12mpbid 232 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-trkgc 28474  df-trkg 28479
This theorem is referenced by:  hlcgrex  28642  midexlem  28718  footexALT  28744  footexlem1  28745  footexlem2  28746  mideulem2  28760  opphllem3  28775  trgcopy  28830  iscgra1  28836  cgrane1  28838  cgrane2  28839  cgrcgra  28847  flatcgra  28850  cgrg3col4  28879  tgsas2  28882  tgsas3  28883  tgasa1  28884
  Copyright terms: Public domain W3C validator