MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgreq Structured version   Visualization version   GIF version

Theorem tgcgreq 28460
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomlr.a (𝜑𝐴𝑃)
tgcgrcomlr.b (𝜑𝐵𝑃)
tgcgrcomlr.c (𝜑𝐶𝑃)
tgcgrcomlr.d (𝜑𝐷𝑃)
tgcgrcomlr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
tgcgreq.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
tgcgreq (𝜑𝐶 = 𝐷)

Proof of Theorem tgcgreq
StepHypRef Expression
1 tgcgreq.1 . 2 (𝜑𝐴 = 𝐵)
2 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
3 tkgeom.d . . 3 = (dist‘𝐺)
4 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 tgcgrcomlr.a . . 3 (𝜑𝐴𝑃)
7 tgcgrcomlr.b . . 3 (𝜑𝐵𝑃)
8 tgcgrcomlr.c . . 3 (𝜑𝐶𝑃)
9 tgcgrcomlr.d . . 3 (𝜑𝐷𝑃)
10 tgcgrcomlr.6 . . 3 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
112, 3, 4, 5, 6, 7, 8, 9, 10tgcgreqb 28459 . 2 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
121, 11mpbid 232 1 (𝜑𝐶 = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  TarskiGcstrkg 28405  Itvcitv 28411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-trkgc 28426  df-trkg 28431
This theorem is referenced by:  tgcgrextend  28463  tgidinside  28549  tgbtwnconn1lem3  28552  krippenlem  28668  ragcgr  28685  lmiisolem  28774  cgrg3col4  28831
  Copyright terms: Public domain W3C validator