MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgreq Structured version   Visualization version   GIF version

Theorem tgcgreq 28168
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Baseβ€˜πΊ)
tkgeom.d βˆ’ = (distβ€˜πΊ)
tkgeom.i 𝐼 = (Itvβ€˜πΊ)
tkgeom.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgcgrcomlr.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgcgrcomlr.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgcgrcomlr.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgcgrcomlr.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
tgcgrcomlr.6 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
tgcgreq.1 (πœ‘ β†’ 𝐴 = 𝐡)
Assertion
Ref Expression
tgcgreq (πœ‘ β†’ 𝐢 = 𝐷)

Proof of Theorem tgcgreq
StepHypRef Expression
1 tgcgreq.1 . 2 (πœ‘ β†’ 𝐴 = 𝐡)
2 tkgeom.p . . 3 𝑃 = (Baseβ€˜πΊ)
3 tkgeom.d . . 3 βˆ’ = (distβ€˜πΊ)
4 tkgeom.i . . 3 𝐼 = (Itvβ€˜πΊ)
5 tkgeom.g . . 3 (πœ‘ β†’ 𝐺 ∈ TarskiG)
6 tgcgrcomlr.a . . 3 (πœ‘ β†’ 𝐴 ∈ 𝑃)
7 tgcgrcomlr.b . . 3 (πœ‘ β†’ 𝐡 ∈ 𝑃)
8 tgcgrcomlr.c . . 3 (πœ‘ β†’ 𝐢 ∈ 𝑃)
9 tgcgrcomlr.d . . 3 (πœ‘ β†’ 𝐷 ∈ 𝑃)
10 tgcgrcomlr.6 . . 3 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
112, 3, 4, 5, 6, 7, 8, 9, 10tgcgreqb 28167 . 2 (πœ‘ β†’ (𝐴 = 𝐡 ↔ 𝐢 = 𝐷))
121, 11mpbid 231 1 (πœ‘ β†’ 𝐢 = 𝐷)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  β€˜cfv 6543  (class class class)co 7412  Basecbs 17151  distcds 17213  TarskiGcstrkg 28113  Itvcitv 28119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415  df-trkgc 28134  df-trkg 28139
This theorem is referenced by:  tgcgrextend  28171  tgidinside  28257  tgbtwnconn1lem3  28260  krippenlem  28376  ragcgr  28393  lmiisolem  28482  cgrg3col4  28539
  Copyright terms: Public domain W3C validator