| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppcthin | Structured version Visualization version GIF version | ||
| Description: The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| oppcthin.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| Ref | Expression |
|---|---|
| oppcthin | ⊢ (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcthin.o | . . . 4 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 2 | eqid 2730 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | 1, 2 | oppcbas 17685 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝐶 ∈ ThinCat → (Base‘𝐶) = (Base‘𝑂)) |
| 5 | eqidd 2731 | . 2 ⊢ (𝐶 ∈ ThinCat → (Hom ‘𝑂) = (Hom ‘𝑂)) | |
| 6 | simpl 482 | . . . 4 ⊢ ((𝐶 ∈ ThinCat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat) | |
| 7 | simprr 772 | . . . 4 ⊢ ((𝐶 ∈ ThinCat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
| 8 | simprl 770 | . . . 4 ⊢ ((𝐶 ∈ ThinCat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
| 9 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 10 | 6, 7, 8, 2, 9 | thincmo 49306 | . . 3 ⊢ ((𝐶 ∈ ThinCat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) |
| 11 | 9, 1 | oppchom 17682 | . . . . 5 ⊢ (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥) |
| 12 | 11 | eleq2i 2821 | . . . 4 ⊢ (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ↔ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) |
| 13 | 12 | mobii 2542 | . . 3 ⊢ (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) |
| 14 | 10, 13 | sylibr 234 | . 2 ⊢ ((𝐶 ∈ ThinCat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦)) |
| 15 | thincc 49300 | . . 3 ⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) | |
| 16 | 1 | oppccat 17689 | . . 3 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 17 | 15, 16 | syl 17 | . 2 ⊢ (𝐶 ∈ ThinCat → 𝑂 ∈ Cat) |
| 18 | 4, 5, 14, 17 | isthincd 49314 | 1 ⊢ (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃*wmo 2532 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 Hom chom 17237 Catccat 17631 oppCatcoppc 17678 ThinCatcthinc 49295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-oppc 17679 df-thinc 49296 |
| This theorem is referenced by: oduoppcciso 49444 |
| Copyright terms: Public domain | W3C validator |