![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oppcthin | Structured version Visualization version GIF version |
Description: The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024.) |
Ref | Expression |
---|---|
oppcthin.o | β’ π = (oppCatβπΆ) |
Ref | Expression |
---|---|
oppcthin | β’ (πΆ β ThinCat β π β ThinCat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcthin.o | . . . 4 β’ π = (oppCatβπΆ) | |
2 | eqid 2724 | . . . 4 β’ (BaseβπΆ) = (BaseβπΆ) | |
3 | 1, 2 | oppcbas 17661 | . . 3 β’ (BaseβπΆ) = (Baseβπ) |
4 | 3 | a1i 11 | . 2 β’ (πΆ β ThinCat β (BaseβπΆ) = (Baseβπ)) |
5 | eqidd 2725 | . 2 β’ (πΆ β ThinCat β (Hom βπ) = (Hom βπ)) | |
6 | simpl 482 | . . . 4 β’ ((πΆ β ThinCat β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β πΆ β ThinCat) | |
7 | simprr 770 | . . . 4 β’ ((πΆ β ThinCat β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β π¦ β (BaseβπΆ)) | |
8 | simprl 768 | . . . 4 β’ ((πΆ β ThinCat β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β π₯ β (BaseβπΆ)) | |
9 | eqid 2724 | . . . 4 β’ (Hom βπΆ) = (Hom βπΆ) | |
10 | 6, 7, 8, 2, 9 | thincmo 47803 | . . 3 β’ ((πΆ β ThinCat β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β β*π π β (π¦(Hom βπΆ)π₯)) |
11 | 9, 1 | oppchom 17658 | . . . . 5 β’ (π₯(Hom βπ)π¦) = (π¦(Hom βπΆ)π₯) |
12 | 11 | eleq2i 2817 | . . . 4 β’ (π β (π₯(Hom βπ)π¦) β π β (π¦(Hom βπΆ)π₯)) |
13 | 12 | mobii 2534 | . . 3 β’ (β*π π β (π₯(Hom βπ)π¦) β β*π π β (π¦(Hom βπΆ)π₯)) |
14 | 10, 13 | sylibr 233 | . 2 β’ ((πΆ β ThinCat β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β β*π π β (π₯(Hom βπ)π¦)) |
15 | thincc 47798 | . . 3 β’ (πΆ β ThinCat β πΆ β Cat) | |
16 | 1 | oppccat 17666 | . . 3 β’ (πΆ β Cat β π β Cat) |
17 | 15, 16 | syl 17 | . 2 β’ (πΆ β ThinCat β π β Cat) |
18 | 4, 5, 14, 17 | isthincd 47811 | 1 β’ (πΆ β ThinCat β π β ThinCat) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β*wmo 2524 βcfv 6533 (class class class)co 7401 Basecbs 17142 Hom chom 17206 Catccat 17606 oppCatcoppc 17653 ThinCatcthinc 47793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-hom 17219 df-cco 17220 df-cat 17610 df-cid 17611 df-oppc 17654 df-thinc 47794 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |