Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppcthin Structured version   Visualization version   GIF version

Theorem oppcthin 46320
Description: The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024.)
Hypothesis
Ref Expression
oppcthin.o 𝑂 = (oppCat‘𝐶)
Assertion
Ref Expression
oppcthin (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat)

Proof of Theorem oppcthin
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcthin.o . . . 4 𝑂 = (oppCat‘𝐶)
2 eqid 2738 . . . 4 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 17428 . . 3 (Base‘𝐶) = (Base‘𝑂)
43a1i 11 . 2 (𝐶 ∈ ThinCat → (Base‘𝐶) = (Base‘𝑂))
5 eqidd 2739 . 2 (𝐶 ∈ ThinCat → (Hom ‘𝑂) = (Hom ‘𝑂))
6 simpl 483 . . . 4 ((𝐶 ∈ ThinCat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat)
7 simprr 770 . . . 4 ((𝐶 ∈ ThinCat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
8 simprl 768 . . . 4 ((𝐶 ∈ ThinCat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
9 eqid 2738 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
106, 7, 8, 2, 9thincmo 46310 . . 3 ((𝐶 ∈ ThinCat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
119, 1oppchom 17425 . . . . 5 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
1211eleq2i 2830 . . . 4 (𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ↔ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
1312mobii 2548 . . 3 (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
1410, 13sylibr 233 . 2 ((𝐶 ∈ ThinCat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦))
15 thincc 46305 . . 3 (𝐶 ∈ ThinCat → 𝐶 ∈ Cat)
161oppccat 17433 . . 3 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
1715, 16syl 17 . 2 (𝐶 ∈ ThinCat → 𝑂 ∈ Cat)
184, 5, 14, 17isthincd 46318 1 (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  ∃*wmo 2538  cfv 6433  (class class class)co 7275  Basecbs 16912  Hom chom 16973  Catccat 17373  oppCatcoppc 17420  ThinCatcthinc 46300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-hom 16986  df-cco 16987  df-cat 17377  df-cid 17378  df-oppc 17421  df-thinc 46301
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator