| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tmdtps | Structured version Visualization version GIF version | ||
| Description: A topological monoid is a topological space. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| Ref | Expression |
|---|---|
| tmdtps | ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 3 | 1, 2 | istmd 23978 | . 2 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓‘𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))) |
| 4 | 3 | simp2bi 1146 | 1 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 TopOpenctopn 17344 +𝑓cplusf 18530 Mndcmnd 18627 TopSpctps 22836 Cn ccn 23128 ×t ctx 23464 TopMndctmd 23974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-tmd 23976 |
| This theorem is referenced by: tgptps 23984 tmdtopon 23985 submtmd 24008 prdstmdd 24028 tsmsadd 24051 tsmssplit 24056 tlmtps 24092 |
| Copyright terms: Public domain | W3C validator |