![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tmdtps | Structured version Visualization version GIF version |
Description: A topological monoid is a topological space. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
tmdtps | ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
2 | eqid 2740 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
3 | 1, 2 | istmd 24103 | . 2 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓‘𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))) |
4 | 3 | simp2bi 1146 | 1 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 TopOpenctopn 17481 +𝑓cplusf 18675 Mndcmnd 18772 TopSpctps 22959 Cn ccn 23253 ×t ctx 23589 TopMndctmd 24099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-tmd 24101 |
This theorem is referenced by: tgptps 24109 tmdtopon 24110 submtmd 24133 prdstmdd 24153 tsmsadd 24176 tsmssplit 24181 tlmtps 24217 |
Copyright terms: Public domain | W3C validator |