| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tmdtps | Structured version Visualization version GIF version | ||
| Description: A topological monoid is a topological space. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| Ref | Expression |
|---|---|
| tmdtps | ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
| 2 | eqid 2733 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 3 | 1, 2 | istmd 24009 | . 2 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓‘𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))) |
| 4 | 3 | simp2bi 1146 | 1 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 TopOpenctopn 17332 +𝑓cplusf 18553 Mndcmnd 18650 TopSpctps 22867 Cn ccn 23159 ×t ctx 23495 TopMndctmd 24005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-tmd 24007 |
| This theorem is referenced by: tgptps 24015 tmdtopon 24016 submtmd 24039 prdstmdd 24059 tsmsadd 24082 tsmssplit 24087 tlmtps 24123 |
| Copyright terms: Public domain | W3C validator |