MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdtps Structured version   Visualization version   GIF version

Theorem tmdtps 23135
Description: A topological monoid is a topological space. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tmdtps (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)

Proof of Theorem tmdtps
StepHypRef Expression
1 eqid 2738 . . 3 (+𝑓𝐺) = (+𝑓𝐺)
2 eqid 2738 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
31, 2istmd 23133 . 2 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
43simp2bi 1144 1 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6418  (class class class)co 7255  TopOpenctopn 17049  +𝑓cplusf 18238  Mndcmnd 18300  TopSpctps 21989   Cn ccn 22283   ×t ctx 22619  TopMndctmd 23129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-tmd 23131
This theorem is referenced by:  tgptps  23139  tmdtopon  23140  submtmd  23163  prdstmdd  23183  tsmsadd  23206  tsmssplit  23211  tlmtps  23247
  Copyright terms: Public domain W3C validator