MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdtps Structured version   Visualization version   GIF version

Theorem tmdtps 23902
Description: A topological monoid is a topological space. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tmdtps (๐บ โˆˆ TopMnd โ†’ ๐บ โˆˆ TopSp)

Proof of Theorem tmdtps
StepHypRef Expression
1 eqid 2724 . . 3 (+๐‘“โ€˜๐บ) = (+๐‘“โ€˜๐บ)
2 eqid 2724 . . 3 (TopOpenโ€˜๐บ) = (TopOpenโ€˜๐บ)
31, 2istmd 23900 . 2 (๐บ โˆˆ TopMnd โ†” (๐บ โˆˆ Mnd โˆง ๐บ โˆˆ TopSp โˆง (+๐‘“โ€˜๐บ) โˆˆ (((TopOpenโ€˜๐บ) ร—t (TopOpenโ€˜๐บ)) Cn (TopOpenโ€˜๐บ))))
43simp2bi 1143 1 (๐บ โˆˆ TopMnd โ†’ ๐บ โˆˆ TopSp)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆˆ wcel 2098  โ€˜cfv 6533  (class class class)co 7401  TopOpenctopn 17366  +๐‘“cplusf 18560  Mndcmnd 18657  TopSpctps 22756   Cn ccn 23050   ร—t ctx 23386  TopMndctmd 23896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-nul 5296
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-iota 6485  df-fv 6541  df-ov 7404  df-tmd 23898
This theorem is referenced by:  tgptps  23906  tmdtopon  23907  submtmd  23930  prdstmdd  23950  tsmsadd  23973  tsmssplit  23978  tlmtps  24014
  Copyright terms: Public domain W3C validator