MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdtps Structured version   Visualization version   GIF version

Theorem tmdtps 24011
Description: A topological monoid is a topological space. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tmdtps (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)

Proof of Theorem tmdtps
StepHypRef Expression
1 eqid 2733 . . 3 (+𝑓𝐺) = (+𝑓𝐺)
2 eqid 2733 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
31, 2istmd 24009 . 2 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
43simp2bi 1146 1 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  cfv 6489  (class class class)co 7355  TopOpenctopn 17332  +𝑓cplusf 18553  Mndcmnd 18650  TopSpctps 22867   Cn ccn 23159   ×t ctx 23495  TopMndctmd 24005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-tmd 24007
This theorem is referenced by:  tgptps  24015  tmdtopon  24016  submtmd  24039  prdstmdd  24059  tsmsadd  24082  tsmssplit  24087  tlmtps  24123
  Copyright terms: Public domain W3C validator