MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdtps Structured version   Visualization version   GIF version

Theorem tmdtps 23939
Description: A topological monoid is a topological space. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tmdtps (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)

Proof of Theorem tmdtps
StepHypRef Expression
1 eqid 2729 . . 3 (+𝑓𝐺) = (+𝑓𝐺)
2 eqid 2729 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
31, 2istmd 23937 . 2 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
43simp2bi 1146 1 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6499  (class class class)co 7369  TopOpenctopn 17360  +𝑓cplusf 18540  Mndcmnd 18637  TopSpctps 22795   Cn ccn 23087   ×t ctx 23423  TopMndctmd 23933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-tmd 23935
This theorem is referenced by:  tgptps  23943  tmdtopon  23944  submtmd  23967  prdstmdd  23987  tsmsadd  24010  tsmssplit  24015  tlmtps  24051
  Copyright terms: Public domain W3C validator