Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topdifinfeq Structured version   Visualization version   GIF version

Theorem topdifinfeq 37401
Description: Two different ways of defining the collection from Exercise 3 of [Munkres] p. 83. (Contributed by ML, 18-Jul-2020.)
Assertion
Ref Expression
topdifinfeq {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ ((𝐴𝑥) = ∅ ∨ (𝐴𝑥) = 𝐴))} = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
Distinct variable group:   𝑥,𝐴

Proof of Theorem topdifinfeq
StepHypRef Expression
1 velpw 4554 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
2 sseqin2 4172 . . . . . . . . 9 (𝑥𝐴 ↔ (𝐴𝑥) = 𝑥)
31, 2bitri 275 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴 ↔ (𝐴𝑥) = 𝑥)
4 eqeq1 2735 . . . . . . . 8 ((𝐴𝑥) = 𝑥 → ((𝐴𝑥) = ∅ ↔ 𝑥 = ∅))
53, 4sylbi 217 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴 → ((𝐴𝑥) = ∅ ↔ 𝑥 = ∅))
6 disj3 4403 . . . . . . . 8 ((𝐴𝑥) = ∅ ↔ 𝐴 = (𝐴𝑥))
7 eqcom 2738 . . . . . . . 8 (𝐴 = (𝐴𝑥) ↔ (𝐴𝑥) = 𝐴)
86, 7bitri 275 . . . . . . 7 ((𝐴𝑥) = ∅ ↔ (𝐴𝑥) = 𝐴)
95, 8bitr3di 286 . . . . . 6 (𝑥 ∈ 𝒫 𝐴 → (𝑥 = ∅ ↔ (𝐴𝑥) = 𝐴))
10 eqss 3945 . . . . . . . 8 (𝑥 = 𝐴 ↔ (𝑥𝐴𝐴𝑥))
11 ssdif0 4315 . . . . . . . . . 10 (𝐴𝑥 ↔ (𝐴𝑥) = ∅)
1211bicomi 224 . . . . . . . . 9 ((𝐴𝑥) = ∅ ↔ 𝐴𝑥)
131, 12anbi12i 628 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) = ∅) ↔ (𝑥𝐴𝐴𝑥))
1410, 13bitr4i 278 . . . . . . 7 (𝑥 = 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) = ∅))
1514baib 535 . . . . . 6 (𝑥 ∈ 𝒫 𝐴 → (𝑥 = 𝐴 ↔ (𝐴𝑥) = ∅))
169, 15orbi12d 918 . . . . 5 (𝑥 ∈ 𝒫 𝐴 → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ ((𝐴𝑥) = 𝐴 ∨ (𝐴𝑥) = ∅)))
17 orcom 870 . . . . 5 (((𝐴𝑥) = 𝐴 ∨ (𝐴𝑥) = ∅) ↔ ((𝐴𝑥) = ∅ ∨ (𝐴𝑥) = 𝐴))
1816, 17bitrdi 287 . . . 4 (𝑥 ∈ 𝒫 𝐴 → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ ((𝐴𝑥) = ∅ ∨ (𝐴𝑥) = 𝐴)))
1918orbi2d 915 . . 3 (𝑥 ∈ 𝒫 𝐴 → ((¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (¬ (𝐴𝑥) ∈ Fin ∨ ((𝐴𝑥) = ∅ ∨ (𝐴𝑥) = 𝐴))))
2019bicomd 223 . 2 (𝑥 ∈ 𝒫 𝐴 → ((¬ (𝐴𝑥) ∈ Fin ∨ ((𝐴𝑥) = ∅ ∨ (𝐴𝑥) = 𝐴)) ↔ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2120rabbiia 3399 1 {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ ((𝐴𝑥) = ∅ ∨ (𝐴𝑥) = 𝐴))} = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  {crab 3395  cdif 3894  cin 3896  wss 3897  c0 4282  𝒫 cpw 4549  Fincfn 8875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904  df-ss 3914  df-nul 4283  df-pw 4551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator