Proof of Theorem topdifinfeq
| Step | Hyp | Ref
| Expression |
| 1 | | velpw 4605 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| 2 | | sseqin2 4223 |
. . . . . . . . 9
⊢ (𝑥 ⊆ 𝐴 ↔ (𝐴 ∩ 𝑥) = 𝑥) |
| 3 | 1, 2 | bitri 275 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ (𝐴 ∩ 𝑥) = 𝑥) |
| 4 | | eqeq1 2741 |
. . . . . . . 8
⊢ ((𝐴 ∩ 𝑥) = 𝑥 → ((𝐴 ∩ 𝑥) = ∅ ↔ 𝑥 = ∅)) |
| 5 | 3, 4 | sylbi 217 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝐴 → ((𝐴 ∩ 𝑥) = ∅ ↔ 𝑥 = ∅)) |
| 6 | | disj3 4454 |
. . . . . . . 8
⊢ ((𝐴 ∩ 𝑥) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝑥)) |
| 7 | | eqcom 2744 |
. . . . . . . 8
⊢ (𝐴 = (𝐴 ∖ 𝑥) ↔ (𝐴 ∖ 𝑥) = 𝐴) |
| 8 | 6, 7 | bitri 275 |
. . . . . . 7
⊢ ((𝐴 ∩ 𝑥) = ∅ ↔ (𝐴 ∖ 𝑥) = 𝐴) |
| 9 | 5, 8 | bitr3di 286 |
. . . . . 6
⊢ (𝑥 ∈ 𝒫 𝐴 → (𝑥 = ∅ ↔ (𝐴 ∖ 𝑥) = 𝐴)) |
| 10 | | eqss 3999 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 ↔ (𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑥)) |
| 11 | | ssdif0 4366 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝑥 ↔ (𝐴 ∖ 𝑥) = ∅) |
| 12 | 11 | bicomi 224 |
. . . . . . . . 9
⊢ ((𝐴 ∖ 𝑥) = ∅ ↔ 𝐴 ⊆ 𝑥) |
| 13 | 1, 12 | anbi12i 628 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) = ∅) ↔ (𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑥)) |
| 14 | 10, 13 | bitr4i 278 |
. . . . . . 7
⊢ (𝑥 = 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) = ∅)) |
| 15 | 14 | baib 535 |
. . . . . 6
⊢ (𝑥 ∈ 𝒫 𝐴 → (𝑥 = 𝐴 ↔ (𝐴 ∖ 𝑥) = ∅)) |
| 16 | 9, 15 | orbi12d 919 |
. . . . 5
⊢ (𝑥 ∈ 𝒫 𝐴 → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ ((𝐴 ∖ 𝑥) = 𝐴 ∨ (𝐴 ∖ 𝑥) = ∅))) |
| 17 | | orcom 871 |
. . . . 5
⊢ (((𝐴 ∖ 𝑥) = 𝐴 ∨ (𝐴 ∖ 𝑥) = ∅) ↔ ((𝐴 ∖ 𝑥) = ∅ ∨ (𝐴 ∖ 𝑥) = 𝐴)) |
| 18 | 16, 17 | bitrdi 287 |
. . . 4
⊢ (𝑥 ∈ 𝒫 𝐴 → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ ((𝐴 ∖ 𝑥) = ∅ ∨ (𝐴 ∖ 𝑥) = 𝐴))) |
| 19 | 18 | orbi2d 916 |
. . 3
⊢ (𝑥 ∈ 𝒫 𝐴 → ((¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ ((𝐴 ∖ 𝑥) = ∅ ∨ (𝐴 ∖ 𝑥) = 𝐴)))) |
| 20 | 19 | bicomd 223 |
. 2
⊢ (𝑥 ∈ 𝒫 𝐴 → ((¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ ((𝐴 ∖ 𝑥) = ∅ ∨ (𝐴 ∖ 𝑥) = 𝐴)) ↔ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
| 21 | 20 | rabbiia 3440 |
1
⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ ((𝐴 ∖ 𝑥) = ∅ ∨ (𝐴 ∖ 𝑥) = 𝐴))} = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} |