Mathbox for ML < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topdifinfeq Structured version   Visualization version   GIF version

Theorem topdifinfeq 34500
 Description: Two different ways of defining the collection from Exercise 3 of [Munkres] p. 83. (Contributed by ML, 18-Jul-2020.)
Assertion
Ref Expression
topdifinfeq {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ ((𝐴𝑥) = ∅ ∨ (𝐴𝑥) = 𝐴))} = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
Distinct variable group:   𝑥,𝐴

Proof of Theorem topdifinfeq
StepHypRef Expression
1 disj3 4405 . . . . . . . 8 ((𝐴𝑥) = ∅ ↔ 𝐴 = (𝐴𝑥))
2 eqcom 2832 . . . . . . . 8 (𝐴 = (𝐴𝑥) ↔ (𝐴𝑥) = 𝐴)
31, 2bitri 276 . . . . . . 7 ((𝐴𝑥) = ∅ ↔ (𝐴𝑥) = 𝐴)
4 velpw 4549 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
5 sseqin2 4195 . . . . . . . . 9 (𝑥𝐴 ↔ (𝐴𝑥) = 𝑥)
64, 5bitri 276 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴 ↔ (𝐴𝑥) = 𝑥)
7 eqeq1 2829 . . . . . . . 8 ((𝐴𝑥) = 𝑥 → ((𝐴𝑥) = ∅ ↔ 𝑥 = ∅))
86, 7sylbi 218 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴 → ((𝐴𝑥) = ∅ ↔ 𝑥 = ∅))
93, 8syl5rbbr 287 . . . . . 6 (𝑥 ∈ 𝒫 𝐴 → (𝑥 = ∅ ↔ (𝐴𝑥) = 𝐴))
10 eqss 3985 . . . . . . . 8 (𝑥 = 𝐴 ↔ (𝑥𝐴𝐴𝑥))
11 ssdif0 4326 . . . . . . . . . 10 (𝐴𝑥 ↔ (𝐴𝑥) = ∅)
1211bicomi 225 . . . . . . . . 9 ((𝐴𝑥) = ∅ ↔ 𝐴𝑥)
134, 12anbi12i 626 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) = ∅) ↔ (𝑥𝐴𝐴𝑥))
1410, 13bitr4i 279 . . . . . . 7 (𝑥 = 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) = ∅))
1514baib 536 . . . . . 6 (𝑥 ∈ 𝒫 𝐴 → (𝑥 = 𝐴 ↔ (𝐴𝑥) = ∅))
169, 15orbi12d 914 . . . . 5 (𝑥 ∈ 𝒫 𝐴 → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ ((𝐴𝑥) = 𝐴 ∨ (𝐴𝑥) = ∅)))
17 orcom 866 . . . . 5 (((𝐴𝑥) = 𝐴 ∨ (𝐴𝑥) = ∅) ↔ ((𝐴𝑥) = ∅ ∨ (𝐴𝑥) = 𝐴))
1816, 17syl6bb 288 . . . 4 (𝑥 ∈ 𝒫 𝐴 → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ ((𝐴𝑥) = ∅ ∨ (𝐴𝑥) = 𝐴)))
1918orbi2d 911 . . 3 (𝑥 ∈ 𝒫 𝐴 → ((¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (¬ (𝐴𝑥) ∈ Fin ∨ ((𝐴𝑥) = ∅ ∨ (𝐴𝑥) = 𝐴))))
2019bicomd 224 . 2 (𝑥 ∈ 𝒫 𝐴 → ((¬ (𝐴𝑥) ∈ Fin ∨ ((𝐴𝑥) = ∅ ∨ (𝐴𝑥) = 𝐴)) ↔ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2120rabbiia 3477 1 {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ ((𝐴𝑥) = ∅ ∨ (𝐴𝑥) = 𝐴))} = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 207   ∧ wa 396   ∨ wo 843   = wceq 1530   ∈ wcel 2107  {crab 3146   ∖ cdif 3936   ∩ cin 3938   ⊆ wss 3939  ∅c0 4294  𝒫 cpw 4541  Fincfn 8501 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ral 3147  df-rab 3151  df-v 3501  df-dif 3942  df-in 3946  df-ss 3955  df-nul 4295  df-pw 4543 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator