| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > topdifinf | Structured version Visualization version GIF version | ||
| Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is a topology if and only if 𝐴 is finite, in which case it is the trivial topology. (Contributed by ML, 17-Jul-2020.) |
| Ref | Expression |
|---|---|
| topdifinf.t | ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} |
| Ref | Expression |
|---|---|
| topdifinf | ⊢ ((𝑇 ∈ (TopOn‘𝐴) ↔ 𝐴 ∈ Fin) ∧ (𝑇 ∈ (TopOn‘𝐴) → 𝑇 = {∅, 𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topdifinf.t | . . . 4 ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
| 2 | 1 | topdifinffin 37382 | . . 3 ⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin) |
| 3 | 1 | topdifinfindis 37380 | . . . 4 ⊢ (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴}) |
| 4 | indistopon 22911 | . . . 4 ⊢ (𝐴 ∈ Fin → {∅, 𝐴} ∈ (TopOn‘𝐴)) | |
| 5 | 3, 4 | eqeltrd 2831 | . . 3 ⊢ (𝐴 ∈ Fin → 𝑇 ∈ (TopOn‘𝐴)) |
| 6 | 2, 5 | impbii 209 | . 2 ⊢ (𝑇 ∈ (TopOn‘𝐴) ↔ 𝐴 ∈ Fin) |
| 7 | 2, 3 | syl 17 | . 2 ⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝑇 = {∅, 𝐴}) |
| 8 | 6, 7 | pm3.2i 470 | 1 ⊢ ((𝑇 ∈ (TopOn‘𝐴) ↔ 𝐴 ∈ Fin) ∧ (𝑇 ∈ (TopOn‘𝐴) → 𝑇 = {∅, 𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 {crab 3395 ∖ cdif 3894 ∅c0 4278 𝒫 cpw 4545 {cpr 4573 ‘cfv 6476 Fincfn 8864 TopOnctopon 22820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-om 7792 df-1o 8380 df-en 8865 df-fin 8868 df-topgen 17342 df-top 22804 df-topon 22821 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |