![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topdifinf | Structured version Visualization version GIF version |
Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets π₯ of π΄ such that the complement of π₯ in π΄ is infinite, or π₯ is the empty set, or π₯ is all of π΄, is a topology if and only if π΄ is finite, in which case it is the trivial topology. (Contributed by ML, 17-Jul-2020.) |
Ref | Expression |
---|---|
topdifinf.t | β’ π = {π₯ β π« π΄ β£ (Β¬ (π΄ β π₯) β Fin β¨ (π₯ = β β¨ π₯ = π΄))} |
Ref | Expression |
---|---|
topdifinf | β’ ((π β (TopOnβπ΄) β π΄ β Fin) β§ (π β (TopOnβπ΄) β π = {β , π΄})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topdifinf.t | . . . 4 β’ π = {π₯ β π« π΄ β£ (Β¬ (π΄ β π₯) β Fin β¨ (π₯ = β β¨ π₯ = π΄))} | |
2 | 1 | topdifinffin 36685 | . . 3 β’ (π β (TopOnβπ΄) β π΄ β Fin) |
3 | 1 | topdifinfindis 36683 | . . . 4 β’ (π΄ β Fin β π = {β , π΄}) |
4 | indistopon 22825 | . . . 4 β’ (π΄ β Fin β {β , π΄} β (TopOnβπ΄)) | |
5 | 3, 4 | eqeltrd 2825 | . . 3 β’ (π΄ β Fin β π β (TopOnβπ΄)) |
6 | 2, 5 | impbii 208 | . 2 β’ (π β (TopOnβπ΄) β π΄ β Fin) |
7 | 2, 3 | syl 17 | . 2 β’ (π β (TopOnβπ΄) β π = {β , π΄}) |
8 | 6, 7 | pm3.2i 470 | 1 β’ ((π β (TopOnβπ΄) β π΄ β Fin) β§ (π β (TopOnβπ΄) β π = {β , π΄})) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β¨ wo 844 = wceq 1533 β wcel 2098 {crab 3424 β cdif 3937 β c0 4314 π« cpw 4594 {cpr 4622 βcfv 6533 Fincfn 8934 TopOnctopon 22733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-om 7849 df-1o 8461 df-en 8935 df-fin 8938 df-topgen 17387 df-top 22717 df-topon 22734 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |