| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > topdifinf | Structured version Visualization version GIF version | ||
| Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is a topology if and only if 𝐴 is finite, in which case it is the trivial topology. (Contributed by ML, 17-Jul-2020.) |
| Ref | Expression |
|---|---|
| topdifinf.t | ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} |
| Ref | Expression |
|---|---|
| topdifinf | ⊢ ((𝑇 ∈ (TopOn‘𝐴) ↔ 𝐴 ∈ Fin) ∧ (𝑇 ∈ (TopOn‘𝐴) → 𝑇 = {∅, 𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topdifinf.t | . . . 4 ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
| 2 | 1 | topdifinffin 37336 | . . 3 ⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin) |
| 3 | 1 | topdifinfindis 37334 | . . . 4 ⊢ (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴}) |
| 4 | indistopon 22888 | . . . 4 ⊢ (𝐴 ∈ Fin → {∅, 𝐴} ∈ (TopOn‘𝐴)) | |
| 5 | 3, 4 | eqeltrd 2828 | . . 3 ⊢ (𝐴 ∈ Fin → 𝑇 ∈ (TopOn‘𝐴)) |
| 6 | 2, 5 | impbii 209 | . 2 ⊢ (𝑇 ∈ (TopOn‘𝐴) ↔ 𝐴 ∈ Fin) |
| 7 | 2, 3 | syl 17 | . 2 ⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝑇 = {∅, 𝐴}) |
| 8 | 6, 7 | pm3.2i 470 | 1 ⊢ ((𝑇 ∈ (TopOn‘𝐴) ↔ 𝐴 ∈ Fin) ∧ (𝑇 ∈ (TopOn‘𝐴) → 𝑇 = {∅, 𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {crab 3405 ∖ cdif 3911 ∅c0 4296 𝒫 cpw 4563 {cpr 4591 ‘cfv 6511 Fincfn 8918 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-en 8919 df-fin 8922 df-topgen 17406 df-top 22781 df-topon 22798 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |