Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topdifinf Structured version   Visualization version   GIF version

Theorem topdifinf 36686
Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets π‘₯ of 𝐴 such that the complement of π‘₯ in 𝐴 is infinite, or π‘₯ is the empty set, or π‘₯ is all of 𝐴, is a topology if and only if 𝐴 is finite, in which case it is the trivial topology. (Contributed by ML, 17-Jul-2020.)
Hypothesis
Ref Expression
topdifinf.t 𝑇 = {π‘₯ ∈ 𝒫 𝐴 ∣ (Β¬ (𝐴 βˆ– π‘₯) ∈ Fin ∨ (π‘₯ = βˆ… ∨ π‘₯ = 𝐴))}
Assertion
Ref Expression
topdifinf ((𝑇 ∈ (TopOnβ€˜π΄) ↔ 𝐴 ∈ Fin) ∧ (𝑇 ∈ (TopOnβ€˜π΄) β†’ 𝑇 = {βˆ…, 𝐴}))
Distinct variable group:   π‘₯,𝐴
Allowed substitution hint:   𝑇(π‘₯)

Proof of Theorem topdifinf
StepHypRef Expression
1 topdifinf.t . . . 4 𝑇 = {π‘₯ ∈ 𝒫 𝐴 ∣ (Β¬ (𝐴 βˆ– π‘₯) ∈ Fin ∨ (π‘₯ = βˆ… ∨ π‘₯ = 𝐴))}
21topdifinffin 36685 . . 3 (𝑇 ∈ (TopOnβ€˜π΄) β†’ 𝐴 ∈ Fin)
31topdifinfindis 36683 . . . 4 (𝐴 ∈ Fin β†’ 𝑇 = {βˆ…, 𝐴})
4 indistopon 22825 . . . 4 (𝐴 ∈ Fin β†’ {βˆ…, 𝐴} ∈ (TopOnβ€˜π΄))
53, 4eqeltrd 2825 . . 3 (𝐴 ∈ Fin β†’ 𝑇 ∈ (TopOnβ€˜π΄))
62, 5impbii 208 . 2 (𝑇 ∈ (TopOnβ€˜π΄) ↔ 𝐴 ∈ Fin)
72, 3syl 17 . 2 (𝑇 ∈ (TopOnβ€˜π΄) β†’ 𝑇 = {βˆ…, 𝐴})
86, 7pm3.2i 470 1 ((𝑇 ∈ (TopOnβ€˜π΄) ↔ 𝐴 ∈ Fin) ∧ (𝑇 ∈ (TopOnβ€˜π΄) β†’ 𝑇 = {βˆ…, 𝐴}))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   = wceq 1533   ∈ wcel 2098  {crab 3424   βˆ– cdif 3937  βˆ…c0 4314  π’« cpw 4594  {cpr 4622  β€˜cfv 6533  Fincfn 8934  TopOnctopon 22733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-om 7849  df-1o 8461  df-en 8935  df-fin 8938  df-topgen 17387  df-top 22717  df-topon 22734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator