| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > toycom | Structured version Visualization version GIF version | ||
| Description: Show the commutative law for an operation 𝑂 on a toy structure class 𝐶 of commutative operations on ℂ. This illustrates how a structure class can be partially specialized. In practice, we would ordinarily define a new constant such as "CAbel" in place of 𝐶. (Contributed by NM, 17-Mar-2013.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| toycom.1 | ⊢ 𝐶 = {𝑔 ∈ Abel ∣ (Base‘𝑔) = ℂ} |
| toycom.2 | ⊢ + = (+g‘𝐾) |
| Ref | Expression |
|---|---|
| toycom | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toycom.1 | . . . . . 6 ⊢ 𝐶 = {𝑔 ∈ Abel ∣ (Base‘𝑔) = ℂ} | |
| 2 | ssrab2 4060 | . . . . . 6 ⊢ {𝑔 ∈ Abel ∣ (Base‘𝑔) = ℂ} ⊆ Abel | |
| 3 | 1, 2 | eqsstri 4010 | . . . . 5 ⊢ 𝐶 ⊆ Abel |
| 4 | 3 | sseli 3959 | . . . 4 ⊢ (𝐾 ∈ 𝐶 → 𝐾 ∈ Abel) |
| 5 | 4 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐾 ∈ Abel) |
| 6 | simp2 1137 | . . . 4 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 7 | fveq2 6881 | . . . . . . . 8 ⊢ (𝑔 = 𝐾 → (Base‘𝑔) = (Base‘𝐾)) | |
| 8 | 7 | eqeq1d 2738 | . . . . . . 7 ⊢ (𝑔 = 𝐾 → ((Base‘𝑔) = ℂ ↔ (Base‘𝐾) = ℂ)) |
| 9 | 8, 1 | elrab2 3679 | . . . . . 6 ⊢ (𝐾 ∈ 𝐶 ↔ (𝐾 ∈ Abel ∧ (Base‘𝐾) = ℂ)) |
| 10 | 9 | simprbi 496 | . . . . 5 ⊢ (𝐾 ∈ 𝐶 → (Base‘𝐾) = ℂ) |
| 11 | 10 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (Base‘𝐾) = ℂ) |
| 12 | 6, 11 | eleqtrrd 2838 | . . 3 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ (Base‘𝐾)) |
| 13 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 14 | 13, 11 | eleqtrrd 2838 | . . 3 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ (Base‘𝐾)) |
| 15 | eqid 2736 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 16 | eqid 2736 | . . . 4 ⊢ (+g‘𝐾) = (+g‘𝐾) | |
| 17 | 15, 16 | ablcom 19785 | . . 3 ⊢ ((𝐾 ∈ Abel ∧ 𝐴 ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾)) → (𝐴(+g‘𝐾)𝐵) = (𝐵(+g‘𝐾)𝐴)) |
| 18 | 5, 12, 14, 17 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴(+g‘𝐾)𝐵) = (𝐵(+g‘𝐾)𝐴)) |
| 19 | toycom.2 | . . 3 ⊢ + = (+g‘𝐾) | |
| 20 | 19 | oveqi 7423 | . 2 ⊢ (𝐴 + 𝐵) = (𝐴(+g‘𝐾)𝐵) |
| 21 | 19 | oveqi 7423 | . 2 ⊢ (𝐵 + 𝐴) = (𝐵(+g‘𝐾)𝐴) |
| 22 | 18, 20, 21 | 3eqtr4g 2796 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3420 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 Basecbs 17233 +gcplusg 17276 Abelcabl 19767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-cmn 19768 df-abl 19769 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |