Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toycom Structured version   Visualization version   GIF version

Theorem toycom 36914
Description: Show the commutative law for an operation 𝑂 on a toy structure class 𝐶 of commuatitive operations on . This illustrates how a structure class can be partially specialized. In practice, we would ordinarily define a new constant such as "CAbel" in place of 𝐶. (Contributed by NM, 17-Mar-2013.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
toycom.1 𝐶 = {𝑔 ∈ Abel ∣ (Base‘𝑔) = ℂ}
toycom.2 + = (+g𝐾)
Assertion
Ref Expression
toycom ((𝐾𝐶𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Distinct variable group:   𝑔,𝐾
Allowed substitution hints:   𝐴(𝑔)   𝐵(𝑔)   𝐶(𝑔)   + (𝑔)

Proof of Theorem toycom
StepHypRef Expression
1 toycom.1 . . . . . 6 𝐶 = {𝑔 ∈ Abel ∣ (Base‘𝑔) = ℂ}
2 ssrab2 4009 . . . . . 6 {𝑔 ∈ Abel ∣ (Base‘𝑔) = ℂ} ⊆ Abel
31, 2eqsstri 3951 . . . . 5 𝐶 ⊆ Abel
43sseli 3913 . . . 4 (𝐾𝐶𝐾 ∈ Abel)
543ad2ant1 1131 . . 3 ((𝐾𝐶𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐾 ∈ Abel)
6 simp2 1135 . . . 4 ((𝐾𝐶𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
7 fveq2 6756 . . . . . . . 8 (𝑔 = 𝐾 → (Base‘𝑔) = (Base‘𝐾))
87eqeq1d 2740 . . . . . . 7 (𝑔 = 𝐾 → ((Base‘𝑔) = ℂ ↔ (Base‘𝐾) = ℂ))
98, 1elrab2 3620 . . . . . 6 (𝐾𝐶 ↔ (𝐾 ∈ Abel ∧ (Base‘𝐾) = ℂ))
109simprbi 496 . . . . 5 (𝐾𝐶 → (Base‘𝐾) = ℂ)
11103ad2ant1 1131 . . . 4 ((𝐾𝐶𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (Base‘𝐾) = ℂ)
126, 11eleqtrrd 2842 . . 3 ((𝐾𝐶𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ (Base‘𝐾))
13 simp3 1136 . . . 4 ((𝐾𝐶𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
1413, 11eleqtrrd 2842 . . 3 ((𝐾𝐶𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ (Base‘𝐾))
15 eqid 2738 . . . 4 (Base‘𝐾) = (Base‘𝐾)
16 eqid 2738 . . . 4 (+g𝐾) = (+g𝐾)
1715, 16ablcom 19319 . . 3 ((𝐾 ∈ Abel ∧ 𝐴 ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾)) → (𝐴(+g𝐾)𝐵) = (𝐵(+g𝐾)𝐴))
185, 12, 14, 17syl3anc 1369 . 2 ((𝐾𝐶𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴(+g𝐾)𝐵) = (𝐵(+g𝐾)𝐴))
19 toycom.2 . . 3 + = (+g𝐾)
2019oveqi 7268 . 2 (𝐴 + 𝐵) = (𝐴(+g𝐾)𝐵)
2119oveqi 7268 . 2 (𝐵 + 𝐴) = (𝐵(+g𝐾)𝐴)
2218, 20, 213eqtr4g 2804 1 ((𝐾𝐶𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  cfv 6418  (class class class)co 7255  cc 10800  Basecbs 16840  +gcplusg 16888  Abelcabl 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-cmn 19303  df-abl 19304
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator