Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > toycom | Structured version Visualization version GIF version |
Description: Show the commutative law for an operation 𝑂 on a toy structure class 𝐶 of commuatitive operations on ℂ. This illustrates how a structure class can be partially specialized. In practice, we would ordinarily define a new constant such as "CAbel" in place of 𝐶. (Contributed by NM, 17-Mar-2013.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
toycom.1 | ⊢ 𝐶 = {𝑔 ∈ Abel ∣ (Base‘𝑔) = ℂ} |
toycom.2 | ⊢ + = (+g‘𝐾) |
Ref | Expression |
---|---|
toycom | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toycom.1 | . . . . . 6 ⊢ 𝐶 = {𝑔 ∈ Abel ∣ (Base‘𝑔) = ℂ} | |
2 | ssrab2 4013 | . . . . . 6 ⊢ {𝑔 ∈ Abel ∣ (Base‘𝑔) = ℂ} ⊆ Abel | |
3 | 1, 2 | eqsstri 3955 | . . . . 5 ⊢ 𝐶 ⊆ Abel |
4 | 3 | sseli 3917 | . . . 4 ⊢ (𝐾 ∈ 𝐶 → 𝐾 ∈ Abel) |
5 | 4 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐾 ∈ Abel) |
6 | simp2 1136 | . . . 4 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
7 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑔 = 𝐾 → (Base‘𝑔) = (Base‘𝐾)) | |
8 | 7 | eqeq1d 2740 | . . . . . . 7 ⊢ (𝑔 = 𝐾 → ((Base‘𝑔) = ℂ ↔ (Base‘𝐾) = ℂ)) |
9 | 8, 1 | elrab2 3627 | . . . . . 6 ⊢ (𝐾 ∈ 𝐶 ↔ (𝐾 ∈ Abel ∧ (Base‘𝐾) = ℂ)) |
10 | 9 | simprbi 497 | . . . . 5 ⊢ (𝐾 ∈ 𝐶 → (Base‘𝐾) = ℂ) |
11 | 10 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (Base‘𝐾) = ℂ) |
12 | 6, 11 | eleqtrrd 2842 | . . 3 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ (Base‘𝐾)) |
13 | simp3 1137 | . . . 4 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
14 | 13, 11 | eleqtrrd 2842 | . . 3 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ (Base‘𝐾)) |
15 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
16 | eqid 2738 | . . . 4 ⊢ (+g‘𝐾) = (+g‘𝐾) | |
17 | 15, 16 | ablcom 19404 | . . 3 ⊢ ((𝐾 ∈ Abel ∧ 𝐴 ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾)) → (𝐴(+g‘𝐾)𝐵) = (𝐵(+g‘𝐾)𝐴)) |
18 | 5, 12, 14, 17 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴(+g‘𝐾)𝐵) = (𝐵(+g‘𝐾)𝐴)) |
19 | toycom.2 | . . 3 ⊢ + = (+g‘𝐾) | |
20 | 19 | oveqi 7288 | . 2 ⊢ (𝐴 + 𝐵) = (𝐴(+g‘𝐾)𝐵) |
21 | 19 | oveqi 7288 | . 2 ⊢ (𝐵 + 𝐴) = (𝐵(+g‘𝐾)𝐴) |
22 | 18, 20, 21 | 3eqtr4g 2803 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 Basecbs 16912 +gcplusg 16962 Abelcabl 19387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-cmn 19388 df-abl 19389 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |