MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablcom Structured version   Visualization version   GIF version

Theorem ablcom 19729
Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.)
Hypotheses
Ref Expression
ablcom.b 𝐵 = (Base‘𝐺)
ablcom.p + = (+g𝐺)
Assertion
Ref Expression
ablcom ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem ablcom
StepHypRef Expression
1 ablcmn 19717 . 2 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
2 ablcom.b . . 3 𝐵 = (Base‘𝐺)
3 ablcom.p . . 3 + = (+g𝐺)
42, 3cmncom 19728 . 2 ((𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
51, 4syl3an1 1163 1 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  CMndccmn 19710  Abelcabl 19711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-cmn 19712  df-abl 19713
This theorem is referenced by:  ablinvadd  19737  ablsub2inv  19738  ablsubadd  19739  abladdsub  19742  ablsubaddsub  19744  ablpncan3  19746  ablsub32  19751  ablnnncan  19752  ablsubsub23  19754  eqgabl  19764  subgabl  19766  ablnsg  19777  lsmcomx  19786  qusabl  19795  frgpnabl  19805  imasabl  19806  subrngringnsg  20462  ngplcan  24499  clmnegsubdi2  25005  clmvsubval2  25010  ncvspi  25056  r1pid  26066  abliso  32977  r1plmhm  33575  lindsunlem  33620  cnaddcom  38965  toycom  38966  lflsub  39060  lfladdcom  39065
  Copyright terms: Public domain W3C validator