![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablcom | Structured version Visualization version GIF version |
Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.) |
Ref | Expression |
---|---|
ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
ablcom.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
ablcom | ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcmn 19819 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
2 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | cmncom 19830 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
5 | 1, 4 | syl3an1 1162 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 +gcplusg 17297 CMndccmn 19812 Abelcabl 19813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-cmn 19814 df-abl 19815 |
This theorem is referenced by: ablinvadd 19839 ablsub2inv 19840 ablsubadd 19841 abladdsub 19844 ablsubaddsub 19846 ablpncan3 19848 ablsub32 19853 ablnnncan 19854 ablsubsub23 19856 eqgabl 19866 subgabl 19868 ablnsg 19879 lsmcomx 19888 qusabl 19897 frgpnabl 19907 imasabl 19908 subrngringnsg 20569 ngplcan 24639 clmnegsubdi2 25151 clmvsubval2 25156 ncvspi 25203 r1pid 26214 abliso 33023 r1plmhm 33609 lindsunlem 33651 cnaddcom 38953 toycom 38954 lflsub 39048 lfladdcom 39053 |
Copyright terms: Public domain | W3C validator |