MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablcom Structured version   Visualization version   GIF version

Theorem ablcom 19696
Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.)
Hypotheses
Ref Expression
ablcom.b 𝐵 = (Base‘𝐺)
ablcom.p + = (+g𝐺)
Assertion
Ref Expression
ablcom ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem ablcom
StepHypRef Expression
1 ablcmn 19684 . 2 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
2 ablcom.b . . 3 𝐵 = (Base‘𝐺)
3 ablcom.p . . 3 + = (+g𝐺)
42, 3cmncom 19695 . 2 ((𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
51, 4syl3an1 1163 1 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  CMndccmn 19677  Abelcabl 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-cmn 19679  df-abl 19680
This theorem is referenced by:  ablinvadd  19704  ablsub2inv  19705  ablsubadd  19706  abladdsub  19709  ablsubaddsub  19711  ablpncan3  19713  ablsub32  19718  ablnnncan  19719  ablsubsub23  19721  eqgabl  19731  subgabl  19733  ablnsg  19744  lsmcomx  19753  qusabl  19762  frgpnabl  19772  imasabl  19773  subrngringnsg  20456  ngplcan  24515  clmnegsubdi2  25021  clmvsubval2  25026  ncvspi  25072  r1pid  26082  abliso  33003  r1plmhm  33551  lindsunlem  33596  cnaddcom  38950  toycom  38951  lflsub  39045  lfladdcom  39050
  Copyright terms: Public domain W3C validator