Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablcom | Structured version Visualization version GIF version |
Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.) |
Ref | Expression |
---|---|
ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
ablcom.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
ablcom | ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcmn 18980 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
2 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | cmncom 18990 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
5 | 1, 4 | syl3an1 1160 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 +gcplusg 16623 CMndccmn 18973 Abelcabl 18974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rab 3079 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-iota 6294 df-fv 6343 df-ov 7153 df-cmn 18975 df-abl 18976 |
This theorem is referenced by: ablinvadd 18998 ablsub2inv 18999 ablsubadd 19000 abladdsub 19003 ablpncan3 19005 ablsub32 19010 ablnnncan 19011 ablsubsub23 19013 eqgabl 19023 subgabl 19024 ablnsg 19035 lsmcomx 19044 qusabl 19053 frgpnabl 19063 ngplcan 23313 clmnegsubdi2 23806 clmvsubval2 23811 ncvspi 23857 r1pid 24859 abliso 30831 lindsunlem 31226 cnaddcom 36548 toycom 36549 lflsub 36643 lfladdcom 36648 |
Copyright terms: Public domain | W3C validator |