| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablcom | Structured version Visualization version GIF version | ||
| Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablcom.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| ablcom | ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcmn 19724 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 2 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | cmncom 19735 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 CMndccmn 19717 Abelcabl 19718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-cmn 19719 df-abl 19720 |
| This theorem is referenced by: ablinvadd 19744 ablsub2inv 19745 ablsubadd 19746 abladdsub 19749 ablsubaddsub 19751 ablpncan3 19753 ablsub32 19758 ablnnncan 19759 ablsubsub23 19761 eqgabl 19771 subgabl 19773 ablnsg 19784 lsmcomx 19793 qusabl 19802 frgpnabl 19812 imasabl 19813 subrngringnsg 20469 ngplcan 24506 clmnegsubdi2 25012 clmvsubval2 25017 ncvspi 25063 r1pid 26073 abliso 32984 r1plmhm 33582 lindsunlem 33627 cnaddcom 38972 toycom 38973 lflsub 39067 lfladdcom 39072 |
| Copyright terms: Public domain | W3C validator |