| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablcom | Structured version Visualization version GIF version | ||
| Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablcom.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| ablcom | ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcmn 19684 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 2 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | cmncom 19695 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 CMndccmn 19677 Abelcabl 19678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-cmn 19679 df-abl 19680 |
| This theorem is referenced by: ablinvadd 19704 ablsub2inv 19705 ablsubadd 19706 abladdsub 19709 ablsubaddsub 19711 ablpncan3 19713 ablsub32 19718 ablnnncan 19719 ablsubsub23 19721 eqgabl 19731 subgabl 19733 ablnsg 19744 lsmcomx 19753 qusabl 19762 frgpnabl 19772 imasabl 19773 subrngringnsg 20456 ngplcan 24515 clmnegsubdi2 25021 clmvsubval2 25026 ncvspi 25072 r1pid 26082 abliso 33003 r1plmhm 33551 lindsunlem 33596 cnaddcom 38950 toycom 38951 lflsub 39045 lfladdcom 39050 |
| Copyright terms: Public domain | W3C validator |