| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablcom | Structured version Visualization version GIF version | ||
| Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablcom.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| ablcom | ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcmn 19766 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 2 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | cmncom 19777 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 CMndccmn 19759 Abelcabl 19760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-cmn 19761 df-abl 19762 |
| This theorem is referenced by: ablinvadd 19786 ablsub2inv 19787 ablsubadd 19788 abladdsub 19791 ablsubaddsub 19793 ablpncan3 19795 ablsub32 19800 ablnnncan 19801 ablsubsub23 19803 eqgabl 19813 subgabl 19815 ablnsg 19826 lsmcomx 19835 qusabl 19844 frgpnabl 19854 imasabl 19855 subrngringnsg 20511 ngplcan 24548 clmnegsubdi2 25054 clmvsubval2 25059 ncvspi 25106 r1pid 26116 abliso 32977 r1plmhm 33565 lindsunlem 33610 cnaddcom 38936 toycom 38937 lflsub 39031 lfladdcom 39036 |
| Copyright terms: Public domain | W3C validator |