Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhcn Structured version   Visualization version   GIF version

Theorem qqhcn 31841
Description: The ℚHom homomorphism is a continuous function. (Contributed by Thierry Arnoux, 9-Nov-2017.)
Hypotheses
Ref Expression
qqhcn.q 𝑄 = (ℂflds ℚ)
qqhcn.j 𝐽 = (TopOpen‘𝑄)
qqhcn.z 𝑍 = (ℤMod‘𝑅)
qqhcn.k 𝐾 = (TopOpen‘𝑅)
Assertion
Ref Expression
qqhcn ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾))

Proof of Theorem qqhcn
Dummy variables 𝑒 𝑑 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 4160 . . . . . . . 8 (NrmRing ∩ DivRing) ⊆ DivRing
21sseli 3913 . . . . . . 7 (𝑅 ∈ (NrmRing ∩ DivRing) → 𝑅 ∈ DivRing)
323ad2ant1 1131 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑅 ∈ DivRing)
4 simp3 1136 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (chr‘𝑅) = 0)
5 eqid 2738 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2738 . . . . . . 7 (/r𝑅) = (/r𝑅)
7 eqid 2738 . . . . . . 7 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
85, 6, 7qqhf 31836 . . . . . 6 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶(Base‘𝑅))
93, 4, 8syl2anc 583 . . . . 5 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶(Base‘𝑅))
10 simpr 484 . . . . . . 7 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
11 qsscn 12629 . . . . . . . . . . . . . 14 ℚ ⊆ ℂ
12 simpr 484 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℚ)
1311, 12sselid 3915 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℂ)
14 0cn 10898 . . . . . . . . . . . . . . 15 0 ∈ ℂ
15 eqid 2738 . . . . . . . . . . . . . . . 16 (abs ∘ − ) = (abs ∘ − )
1615cnmetdval 23840 . . . . . . . . . . . . . . 15 ((0 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (0(abs ∘ − )𝑞) = (abs‘(0 − 𝑞)))
1714, 16mpan 686 . . . . . . . . . . . . . 14 (𝑞 ∈ ℂ → (0(abs ∘ − )𝑞) = (abs‘(0 − 𝑞)))
18 df-neg 11138 . . . . . . . . . . . . . . . 16 -𝑞 = (0 − 𝑞)
1918fveq2i 6759 . . . . . . . . . . . . . . 15 (abs‘-𝑞) = (abs‘(0 − 𝑞))
2019a1i 11 . . . . . . . . . . . . . 14 (𝑞 ∈ ℂ → (abs‘-𝑞) = (abs‘(0 − 𝑞)))
21 absneg 14917 . . . . . . . . . . . . . 14 (𝑞 ∈ ℂ → (abs‘-𝑞) = (abs‘𝑞))
2217, 20, 213eqtr2d 2784 . . . . . . . . . . . . 13 (𝑞 ∈ ℂ → (0(abs ∘ − )𝑞) = (abs‘𝑞))
2313, 22syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (0(abs ∘ − )𝑞) = (abs‘𝑞))
24 zssq 12625 . . . . . . . . . . . . . . 15 ℤ ⊆ ℚ
25 0z 12260 . . . . . . . . . . . . . . 15 0 ∈ ℤ
2624, 25sselii 3914 . . . . . . . . . . . . . 14 0 ∈ ℚ
2726a1i 11 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 0 ∈ ℚ)
2827, 12ovresd 7417 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (0(abs ∘ − )𝑞))
29 eqid 2738 . . . . . . . . . . . . . 14 (norm‘𝑅) = (norm‘𝑅)
30 qqhcn.z . . . . . . . . . . . . . 14 𝑍 = (ℤMod‘𝑅)
3129, 30qqhnm 31840 . . . . . . . . . . . . 13 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)) = (abs‘𝑞))
3231adantlr 711 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)) = (abs‘𝑞))
3323, 28, 323eqtr4d 2788 . . . . . . . . . . 11 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)))
349ad2antrr 722 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (ℚHom‘𝑅):ℚ⟶(Base‘𝑅))
3534, 27ffvelrnd 6944 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘0) ∈ (Base‘𝑅))
3634, 12ffvelrnd 6944 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑞) ∈ (Base‘𝑅))
3735, 36ovresd 7417 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) = (((ℚHom‘𝑅)‘0)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)))
38 inss1 4159 . . . . . . . . . . . . . . . . 17 (NrmRing ∩ DivRing) ⊆ NrmRing
3938sseli 3913 . . . . . . . . . . . . . . . 16 (𝑅 ∈ (NrmRing ∩ DivRing) → 𝑅 ∈ NrmRing)
40393ad2ant1 1131 . . . . . . . . . . . . . . 15 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑅 ∈ NrmRing)
4140ad2antrr 722 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ NrmRing)
42 nrgngp 23732 . . . . . . . . . . . . . 14 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
4341, 42syl 17 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ NrmGrp)
44 eqid 2738 . . . . . . . . . . . . . 14 (-g𝑅) = (-g𝑅)
45 eqid 2738 . . . . . . . . . . . . . 14 (dist‘𝑅) = (dist‘𝑅)
4629, 5, 44, 45ngpdsr 23667 . . . . . . . . . . . . 13 ((𝑅 ∈ NrmGrp ∧ ((ℚHom‘𝑅)‘0) ∈ (Base‘𝑅) ∧ ((ℚHom‘𝑅)‘𝑞) ∈ (Base‘𝑅)) → (((ℚHom‘𝑅)‘0)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0))))
4743, 35, 36, 46syl3anc 1369 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘0)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0))))
483ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ DivRing)
494ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (chr‘𝑅) = 0)
505, 6, 7qqh0 31834 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g𝑅))
5148, 49, 50syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘0) = (0g𝑅))
5251oveq2d 7271 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0)) = (((ℚHom‘𝑅)‘𝑞)(-g𝑅)(0g𝑅)))
53 ngpgrp 23661 . . . . . . . . . . . . . . . 16 (𝑅 ∈ NrmGrp → 𝑅 ∈ Grp)
5443, 53syl 17 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ Grp)
55 eqid 2738 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
565, 55, 44grpsubid1 18575 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Grp ∧ ((ℚHom‘𝑅)‘𝑞) ∈ (Base‘𝑅)) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)(0g𝑅)) = ((ℚHom‘𝑅)‘𝑞))
5754, 36, 56syl2anc 583 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)(0g𝑅)) = ((ℚHom‘𝑅)‘𝑞))
5852, 57eqtrd 2778 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0)) = ((ℚHom‘𝑅)‘𝑞))
5958fveq2d 6760 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0))) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)))
6037, 47, 593eqtrd 2782 . . . . . . . . . . 11 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)))
6133, 60eqtr4d 2781 . . . . . . . . . 10 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)))
6261breq1d 5080 . . . . . . . . 9 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 ↔ (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6362biimpd 228 . . . . . . . 8 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6463ralrimiva 3107 . . . . . . 7 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) → ∀𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
65 breq2 5074 . . . . . . . 8 (𝑑 = 𝑒 → ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 ↔ (0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒))
6665rspceaimv 3557 . . . . . . 7 ((𝑒 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6710, 64, 66syl2anc 583 . . . . . 6 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6867ralrimiva 3107 . . . . 5 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
69 qqhcn.q . . . . . . . 8 𝑄 = (ℂflds ℚ)
70 cnfldxms 23846 . . . . . . . . 9 fld ∈ ∞MetSp
71 qex 12630 . . . . . . . . 9 ℚ ∈ V
72 ressxms 23587 . . . . . . . . 9 ((ℂfld ∈ ∞MetSp ∧ ℚ ∈ V) → (ℂflds ℚ) ∈ ∞MetSp)
7370, 71, 72mp2an 688 . . . . . . . 8 (ℂflds ℚ) ∈ ∞MetSp
7469, 73eqeltri 2835 . . . . . . 7 𝑄 ∈ ∞MetSp
7569qrngbas 26672 . . . . . . . 8 ℚ = (Base‘𝑄)
76 cnfldds 20520 . . . . . . . . . 10 (abs ∘ − ) = (dist‘ℂfld)
7769, 76ressds 17039 . . . . . . . . 9 (ℚ ∈ V → (abs ∘ − ) = (dist‘𝑄))
7871, 77ax-mp 5 . . . . . . . 8 (abs ∘ − ) = (dist‘𝑄)
7975, 78xmsxmet2 23520 . . . . . . 7 (𝑄 ∈ ∞MetSp → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
8074, 79mp1i 13 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
81 ngpxms 23663 . . . . . . . . 9 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
8239, 42, 813syl 18 . . . . . . . 8 (𝑅 ∈ (NrmRing ∩ DivRing) → 𝑅 ∈ ∞MetSp)
83823ad2ant1 1131 . . . . . . 7 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑅 ∈ ∞MetSp)
845, 45xmsxmet2 23520 . . . . . . 7 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
8583, 84syl 17 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
8626a1i 11 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 0 ∈ ℚ)
87 qqhcn.j . . . . . . . . 9 𝐽 = (TopOpen‘𝑄)
8878reseq1i 5876 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℚ × ℚ)) = ((dist‘𝑄) ↾ (ℚ × ℚ))
8987, 75, 88xmstopn 23512 . . . . . . . 8 (𝑄 ∈ ∞MetSp → 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (ℚ × ℚ))))
9074, 89ax-mp 5 . . . . . . 7 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (ℚ × ℚ)))
91 eqid 2738 . . . . . . 7 (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))
9290, 91metcnp 23603 . . . . . 6 ((((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ) ∧ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)) ∧ 0 ∈ ℚ) → ((ℚHom‘𝑅) ∈ ((𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))‘0) ↔ ((ℚHom‘𝑅):ℚ⟶(Base‘𝑅) ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))))
9380, 85, 86, 92syl3anc 1369 . . . . 5 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅) ∈ ((𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))‘0) ↔ ((ℚHom‘𝑅):ℚ⟶(Base‘𝑅) ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))))
949, 68, 93mpbir2and 709 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ ((𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))‘0))
95 qqhcn.k . . . . . . . 8 𝐾 = (TopOpen‘𝑅)
96 eqid 2738 . . . . . . . 8 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
9795, 5, 96xmstopn 23512 . . . . . . 7 (𝑅 ∈ ∞MetSp → 𝐾 = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
9883, 97syl 17 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝐾 = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
9998oveq2d 7271 . . . . 5 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (𝐽 CnP 𝐾) = (𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))
10099fveq1d 6758 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((𝐽 CnP 𝐾)‘0) = ((𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))‘0))
10194, 100eleqtrrd 2842 . . 3 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ ((𝐽 CnP 𝐾)‘0))
102 cnfldtgp 23938 . . . . . 6 fld ∈ TopGrp
103 qsubdrg 20562 . . . . . . . 8 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
104103simpli 483 . . . . . . 7 ℚ ∈ (SubRing‘ℂfld)
105 subrgsubg 19945 . . . . . . 7 (ℚ ∈ (SubRing‘ℂfld) → ℚ ∈ (SubGrp‘ℂfld))
106104, 105ax-mp 5 . . . . . 6 ℚ ∈ (SubGrp‘ℂfld)
10769subgtgp 23164 . . . . . 6 ((ℂfld ∈ TopGrp ∧ ℚ ∈ (SubGrp‘ℂfld)) → 𝑄 ∈ TopGrp)
108102, 106, 107mp2an 688 . . . . 5 𝑄 ∈ TopGrp
109 tgptmd 23138 . . . . 5 (𝑄 ∈ TopGrp → 𝑄 ∈ TopMnd)
110108, 109mp1i 13 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑄 ∈ TopMnd)
111 nrgtrg 23760 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing)
112 trgtmd2 23228 . . . . 5 (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd)
11340, 111, 1123syl 18 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑅 ∈ TopMnd)
1145, 6, 7, 69qqhghm 31838 . . . . 5 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
1153, 4, 114syl2anc 583 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
11675, 87, 95ghmcnp 23174 . . . 4 ((𝑄 ∈ TopMnd ∧ 𝑅 ∈ TopMnd ∧ (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅)) → ((ℚHom‘𝑅) ∈ ((𝐽 CnP 𝐾)‘0) ↔ (0 ∈ ℚ ∧ (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾))))
117110, 113, 115, 116syl3anc 1369 . . 3 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅) ∈ ((𝐽 CnP 𝐾)‘0) ↔ (0 ∈ ℚ ∧ (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾))))
118101, 117mpbid 231 . 2 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (0 ∈ ℚ ∧ (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾)))
119118simprd 495 1 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cin 3882   class class class wbr 5070   × cxp 5578  cres 5582  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   < clt 10940  cmin 11135  -cneg 11136  cz 12249  cq 12617  +crp 12659  abscabs 14873  Basecbs 16840  s cress 16867  distcds 16897  TopOpenctopn 17049  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  SubGrpcsubg 18664   GrpHom cghm 18746  /rcdvr 19839  DivRingcdr 19906  SubRingcsubrg 19935  ∞Metcxmet 20495  MetOpencmopn 20500  fldccnfld 20510  ℤRHomczrh 20613  ℤModczlm 20614  chrcchr 20615   Cn ccn 22283   CnP ccnp 22284  TopMndctmd 23129  TopGrpctgp 23130  TopRingctrg 23215  ∞MetSpcxms 23378  normcnm 23638  NrmGrpcngp 23639  NrmRingcnrg 23641  NrmModcnlm 23642  ℚHomcqqh 31822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-numer 16367  df-denom 16368  df-gz 16559  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-od 19051  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-abv 19992  df-lmod 20040  df-scaf 20041  df-sra 20349  df-rgmod 20350  df-nzr 20442  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-zlm 20618  df-chr 20619  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cn 22286  df-cnp 22287  df-tx 22621  df-hmeo 22814  df-tmd 23131  df-tgp 23132  df-trg 23219  df-xms 23381  df-ms 23382  df-tms 23383  df-nm 23644  df-ngp 23645  df-nrg 23647  df-nlm 23648  df-qqh 31823
This theorem is referenced by:  rrhqima  31864
  Copyright terms: Public domain W3C validator