Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhcn Structured version   Visualization version   GIF version

Theorem qqhcn 33937
Description: The ℚHom homomorphism is a continuous function. (Contributed by Thierry Arnoux, 9-Nov-2017.)
Hypotheses
Ref Expression
qqhcn.q 𝑄 = (ℂflds ℚ)
qqhcn.j 𝐽 = (TopOpen‘𝑄)
qqhcn.z 𝑍 = (ℤMod‘𝑅)
qqhcn.k 𝐾 = (TopOpen‘𝑅)
Assertion
Ref Expression
qqhcn ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾))

Proof of Theorem qqhcn
Dummy variables 𝑒 𝑑 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 4259 . . . . . . . 8 (NrmRing ∩ DivRing) ⊆ DivRing
21sseli 4004 . . . . . . 7 (𝑅 ∈ (NrmRing ∩ DivRing) → 𝑅 ∈ DivRing)
323ad2ant1 1133 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑅 ∈ DivRing)
4 simp3 1138 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (chr‘𝑅) = 0)
5 eqid 2740 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2740 . . . . . . 7 (/r𝑅) = (/r𝑅)
7 eqid 2740 . . . . . . 7 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
85, 6, 7qqhf 33932 . . . . . 6 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶(Base‘𝑅))
93, 4, 8syl2anc 583 . . . . 5 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶(Base‘𝑅))
10 simpr 484 . . . . . . 7 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
11 qsscn 13025 . . . . . . . . . . . . . 14 ℚ ⊆ ℂ
12 simpr 484 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℚ)
1311, 12sselid 4006 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℂ)
14 0cn 11282 . . . . . . . . . . . . . . 15 0 ∈ ℂ
15 eqid 2740 . . . . . . . . . . . . . . . 16 (abs ∘ − ) = (abs ∘ − )
1615cnmetdval 24812 . . . . . . . . . . . . . . 15 ((0 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (0(abs ∘ − )𝑞) = (abs‘(0 − 𝑞)))
1714, 16mpan 689 . . . . . . . . . . . . . 14 (𝑞 ∈ ℂ → (0(abs ∘ − )𝑞) = (abs‘(0 − 𝑞)))
18 df-neg 11523 . . . . . . . . . . . . . . . 16 -𝑞 = (0 − 𝑞)
1918fveq2i 6923 . . . . . . . . . . . . . . 15 (abs‘-𝑞) = (abs‘(0 − 𝑞))
2019a1i 11 . . . . . . . . . . . . . 14 (𝑞 ∈ ℂ → (abs‘-𝑞) = (abs‘(0 − 𝑞)))
21 absneg 15326 . . . . . . . . . . . . . 14 (𝑞 ∈ ℂ → (abs‘-𝑞) = (abs‘𝑞))
2217, 20, 213eqtr2d 2786 . . . . . . . . . . . . 13 (𝑞 ∈ ℂ → (0(abs ∘ − )𝑞) = (abs‘𝑞))
2313, 22syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (0(abs ∘ − )𝑞) = (abs‘𝑞))
24 zssq 13021 . . . . . . . . . . . . . . 15 ℤ ⊆ ℚ
25 0z 12650 . . . . . . . . . . . . . . 15 0 ∈ ℤ
2624, 25sselii 4005 . . . . . . . . . . . . . 14 0 ∈ ℚ
2726a1i 11 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 0 ∈ ℚ)
2827, 12ovresd 7617 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (0(abs ∘ − )𝑞))
29 eqid 2740 . . . . . . . . . . . . . 14 (norm‘𝑅) = (norm‘𝑅)
30 qqhcn.z . . . . . . . . . . . . . 14 𝑍 = (ℤMod‘𝑅)
3129, 30qqhnm 33936 . . . . . . . . . . . . 13 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)) = (abs‘𝑞))
3231adantlr 714 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)) = (abs‘𝑞))
3323, 28, 323eqtr4d 2790 . . . . . . . . . . 11 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)))
349ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (ℚHom‘𝑅):ℚ⟶(Base‘𝑅))
3534, 27ffvelcdmd 7119 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘0) ∈ (Base‘𝑅))
3634, 12ffvelcdmd 7119 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑞) ∈ (Base‘𝑅))
3735, 36ovresd 7617 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) = (((ℚHom‘𝑅)‘0)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)))
38 inss1 4258 . . . . . . . . . . . . . . . . 17 (NrmRing ∩ DivRing) ⊆ NrmRing
3938sseli 4004 . . . . . . . . . . . . . . . 16 (𝑅 ∈ (NrmRing ∩ DivRing) → 𝑅 ∈ NrmRing)
40393ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑅 ∈ NrmRing)
4140ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ NrmRing)
42 nrgngp 24704 . . . . . . . . . . . . . 14 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
4341, 42syl 17 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ NrmGrp)
44 eqid 2740 . . . . . . . . . . . . . 14 (-g𝑅) = (-g𝑅)
45 eqid 2740 . . . . . . . . . . . . . 14 (dist‘𝑅) = (dist‘𝑅)
4629, 5, 44, 45ngpdsr 24639 . . . . . . . . . . . . 13 ((𝑅 ∈ NrmGrp ∧ ((ℚHom‘𝑅)‘0) ∈ (Base‘𝑅) ∧ ((ℚHom‘𝑅)‘𝑞) ∈ (Base‘𝑅)) → (((ℚHom‘𝑅)‘0)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0))))
4743, 35, 36, 46syl3anc 1371 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘0)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0))))
483ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ DivRing)
494ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (chr‘𝑅) = 0)
505, 6, 7qqh0 33930 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g𝑅))
5148, 49, 50syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘0) = (0g𝑅))
5251oveq2d 7464 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0)) = (((ℚHom‘𝑅)‘𝑞)(-g𝑅)(0g𝑅)))
53 ngpgrp 24633 . . . . . . . . . . . . . . . 16 (𝑅 ∈ NrmGrp → 𝑅 ∈ Grp)
5443, 53syl 17 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ Grp)
55 eqid 2740 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
565, 55, 44grpsubid1 19065 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Grp ∧ ((ℚHom‘𝑅)‘𝑞) ∈ (Base‘𝑅)) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)(0g𝑅)) = ((ℚHom‘𝑅)‘𝑞))
5754, 36, 56syl2anc 583 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)(0g𝑅)) = ((ℚHom‘𝑅)‘𝑞))
5852, 57eqtrd 2780 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0)) = ((ℚHom‘𝑅)‘𝑞))
5958fveq2d 6924 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0))) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)))
6037, 47, 593eqtrd 2784 . . . . . . . . . . 11 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)))
6133, 60eqtr4d 2783 . . . . . . . . . 10 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)))
6261breq1d 5176 . . . . . . . . 9 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 ↔ (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6362biimpd 229 . . . . . . . 8 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6463ralrimiva 3152 . . . . . . 7 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) → ∀𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
65 breq2 5170 . . . . . . . 8 (𝑑 = 𝑒 → ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 ↔ (0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒))
6665rspceaimv 3641 . . . . . . 7 ((𝑒 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6710, 64, 66syl2anc 583 . . . . . 6 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6867ralrimiva 3152 . . . . 5 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
69 qqhcn.q . . . . . . . 8 𝑄 = (ℂflds ℚ)
70 cnfldxms 24818 . . . . . . . . 9 fld ∈ ∞MetSp
71 qex 13026 . . . . . . . . 9 ℚ ∈ V
72 ressxms 24559 . . . . . . . . 9 ((ℂfld ∈ ∞MetSp ∧ ℚ ∈ V) → (ℂflds ℚ) ∈ ∞MetSp)
7370, 71, 72mp2an 691 . . . . . . . 8 (ℂflds ℚ) ∈ ∞MetSp
7469, 73eqeltri 2840 . . . . . . 7 𝑄 ∈ ∞MetSp
7569qrngbas 27681 . . . . . . . 8 ℚ = (Base‘𝑄)
76 cnfldds 21399 . . . . . . . . . 10 (abs ∘ − ) = (dist‘ℂfld)
7769, 76ressds 17469 . . . . . . . . 9 (ℚ ∈ V → (abs ∘ − ) = (dist‘𝑄))
7871, 77ax-mp 5 . . . . . . . 8 (abs ∘ − ) = (dist‘𝑄)
7975, 78xmsxmet2 24490 . . . . . . 7 (𝑄 ∈ ∞MetSp → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
8074, 79mp1i 13 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
81 ngpxms 24635 . . . . . . . . 9 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
8239, 42, 813syl 18 . . . . . . . 8 (𝑅 ∈ (NrmRing ∩ DivRing) → 𝑅 ∈ ∞MetSp)
83823ad2ant1 1133 . . . . . . 7 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑅 ∈ ∞MetSp)
845, 45xmsxmet2 24490 . . . . . . 7 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
8583, 84syl 17 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
8626a1i 11 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 0 ∈ ℚ)
87 qqhcn.j . . . . . . . . 9 𝐽 = (TopOpen‘𝑄)
8878reseq1i 6005 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℚ × ℚ)) = ((dist‘𝑄) ↾ (ℚ × ℚ))
8987, 75, 88xmstopn 24482 . . . . . . . 8 (𝑄 ∈ ∞MetSp → 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (ℚ × ℚ))))
9074, 89ax-mp 5 . . . . . . 7 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (ℚ × ℚ)))
91 eqid 2740 . . . . . . 7 (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))
9290, 91metcnp 24575 . . . . . 6 ((((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ) ∧ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)) ∧ 0 ∈ ℚ) → ((ℚHom‘𝑅) ∈ ((𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))‘0) ↔ ((ℚHom‘𝑅):ℚ⟶(Base‘𝑅) ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))))
9380, 85, 86, 92syl3anc 1371 . . . . 5 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅) ∈ ((𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))‘0) ↔ ((ℚHom‘𝑅):ℚ⟶(Base‘𝑅) ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))))
949, 68, 93mpbir2and 712 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ ((𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))‘0))
95 qqhcn.k . . . . . . . 8 𝐾 = (TopOpen‘𝑅)
96 eqid 2740 . . . . . . . 8 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
9795, 5, 96xmstopn 24482 . . . . . . 7 (𝑅 ∈ ∞MetSp → 𝐾 = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
9883, 97syl 17 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝐾 = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
9998oveq2d 7464 . . . . 5 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (𝐽 CnP 𝐾) = (𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))
10099fveq1d 6922 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((𝐽 CnP 𝐾)‘0) = ((𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))‘0))
10194, 100eleqtrrd 2847 . . 3 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ ((𝐽 CnP 𝐾)‘0))
102 cnfldtgp 24912 . . . . . 6 fld ∈ TopGrp
103 qsubdrg 21460 . . . . . . . 8 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
104103simpli 483 . . . . . . 7 ℚ ∈ (SubRing‘ℂfld)
105 subrgsubg 20605 . . . . . . 7 (ℚ ∈ (SubRing‘ℂfld) → ℚ ∈ (SubGrp‘ℂfld))
106104, 105ax-mp 5 . . . . . 6 ℚ ∈ (SubGrp‘ℂfld)
10769subgtgp 24134 . . . . . 6 ((ℂfld ∈ TopGrp ∧ ℚ ∈ (SubGrp‘ℂfld)) → 𝑄 ∈ TopGrp)
108102, 106, 107mp2an 691 . . . . 5 𝑄 ∈ TopGrp
109 tgptmd 24108 . . . . 5 (𝑄 ∈ TopGrp → 𝑄 ∈ TopMnd)
110108, 109mp1i 13 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑄 ∈ TopMnd)
111 nrgtrg 24732 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing)
112 trgtmd2 24198 . . . . 5 (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd)
11340, 111, 1123syl 18 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑅 ∈ TopMnd)
1145, 6, 7, 69qqhghm 33934 . . . . 5 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
1153, 4, 114syl2anc 583 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
11675, 87, 95ghmcnp 24144 . . . 4 ((𝑄 ∈ TopMnd ∧ 𝑅 ∈ TopMnd ∧ (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅)) → ((ℚHom‘𝑅) ∈ ((𝐽 CnP 𝐾)‘0) ↔ (0 ∈ ℚ ∧ (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾))))
117110, 113, 115, 116syl3anc 1371 . . 3 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅) ∈ ((𝐽 CnP 𝐾)‘0) ↔ (0 ∈ ℚ ∧ (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾))))
118101, 117mpbid 232 . 2 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (0 ∈ ℚ ∧ (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾)))
119118simprd 495 1 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975   class class class wbr 5166   × cxp 5698  cres 5702  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184   < clt 11324  cmin 11520  -cneg 11521  cz 12639  cq 13013  +crp 13057  abscabs 15283  Basecbs 17258  s cress 17287  distcds 17320  TopOpenctopn 17481  0gc0g 17499  Grpcgrp 18973  -gcsg 18975  SubGrpcsubg 19160   GrpHom cghm 19252  /rcdvr 20426  SubRingcsubrg 20595  DivRingcdr 20751  ∞Metcxmet 21372  MetOpencmopn 21377  fldccnfld 21387  ℤRHomczrh 21533  ℤModczlm 21534  chrcchr 21535   Cn ccn 23253   CnP ccnp 23254  TopMndctmd 24099  TopGrpctgp 24100  TopRingctrg 24185  ∞MetSpcxms 24348  normcnm 24610  NrmGrpcngp 24611  NrmRingcnrg 24613  NrmModcnlm 24614  ℚHomcqqh 33918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-numer 16782  df-denom 16783  df-gz 16977  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-plusf 18677  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-od 19570  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-drng 20753  df-abv 20832  df-lmod 20882  df-scaf 20883  df-sra 21195  df-rgmod 21196  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-zlm 21538  df-chr 21539  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-tx 23591  df-hmeo 23784  df-tmd 24101  df-tgp 24102  df-trg 24189  df-xms 24351  df-ms 24352  df-tms 24353  df-nm 24616  df-ngp 24617  df-nrg 24619  df-nlm 24620  df-qqh 33919
This theorem is referenced by:  rrhqima  33960
  Copyright terms: Public domain W3C validator