Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhcn Structured version   Visualization version   GIF version

Theorem qqhcn 33992
Description: The ℚHom homomorphism is a continuous function. (Contributed by Thierry Arnoux, 9-Nov-2017.)
Hypotheses
Ref Expression
qqhcn.q 𝑄 = (ℂflds ℚ)
qqhcn.j 𝐽 = (TopOpen‘𝑄)
qqhcn.z 𝑍 = (ℤMod‘𝑅)
qqhcn.k 𝐾 = (TopOpen‘𝑅)
Assertion
Ref Expression
qqhcn ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾))

Proof of Theorem qqhcn
Dummy variables 𝑒 𝑑 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 4238 . . . . . . . 8 (NrmRing ∩ DivRing) ⊆ DivRing
21sseli 3979 . . . . . . 7 (𝑅 ∈ (NrmRing ∩ DivRing) → 𝑅 ∈ DivRing)
323ad2ant1 1134 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑅 ∈ DivRing)
4 simp3 1139 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (chr‘𝑅) = 0)
5 eqid 2737 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2737 . . . . . . 7 (/r𝑅) = (/r𝑅)
7 eqid 2737 . . . . . . 7 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
85, 6, 7qqhf 33987 . . . . . 6 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶(Base‘𝑅))
93, 4, 8syl2anc 584 . . . . 5 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶(Base‘𝑅))
10 simpr 484 . . . . . . 7 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
11 qsscn 13002 . . . . . . . . . . . . . 14 ℚ ⊆ ℂ
12 simpr 484 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℚ)
1311, 12sselid 3981 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℂ)
14 0cn 11253 . . . . . . . . . . . . . . 15 0 ∈ ℂ
15 eqid 2737 . . . . . . . . . . . . . . . 16 (abs ∘ − ) = (abs ∘ − )
1615cnmetdval 24791 . . . . . . . . . . . . . . 15 ((0 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (0(abs ∘ − )𝑞) = (abs‘(0 − 𝑞)))
1714, 16mpan 690 . . . . . . . . . . . . . 14 (𝑞 ∈ ℂ → (0(abs ∘ − )𝑞) = (abs‘(0 − 𝑞)))
18 df-neg 11495 . . . . . . . . . . . . . . . 16 -𝑞 = (0 − 𝑞)
1918fveq2i 6909 . . . . . . . . . . . . . . 15 (abs‘-𝑞) = (abs‘(0 − 𝑞))
2019a1i 11 . . . . . . . . . . . . . 14 (𝑞 ∈ ℂ → (abs‘-𝑞) = (abs‘(0 − 𝑞)))
21 absneg 15316 . . . . . . . . . . . . . 14 (𝑞 ∈ ℂ → (abs‘-𝑞) = (abs‘𝑞))
2217, 20, 213eqtr2d 2783 . . . . . . . . . . . . 13 (𝑞 ∈ ℂ → (0(abs ∘ − )𝑞) = (abs‘𝑞))
2313, 22syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (0(abs ∘ − )𝑞) = (abs‘𝑞))
24 zssq 12998 . . . . . . . . . . . . . . 15 ℤ ⊆ ℚ
25 0z 12624 . . . . . . . . . . . . . . 15 0 ∈ ℤ
2624, 25sselii 3980 . . . . . . . . . . . . . 14 0 ∈ ℚ
2726a1i 11 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 0 ∈ ℚ)
2827, 12ovresd 7600 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (0(abs ∘ − )𝑞))
29 eqid 2737 . . . . . . . . . . . . . 14 (norm‘𝑅) = (norm‘𝑅)
30 qqhcn.z . . . . . . . . . . . . . 14 𝑍 = (ℤMod‘𝑅)
3129, 30qqhnm 33991 . . . . . . . . . . . . 13 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)) = (abs‘𝑞))
3231adantlr 715 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)) = (abs‘𝑞))
3323, 28, 323eqtr4d 2787 . . . . . . . . . . 11 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)))
349ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (ℚHom‘𝑅):ℚ⟶(Base‘𝑅))
3534, 27ffvelcdmd 7105 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘0) ∈ (Base‘𝑅))
3634, 12ffvelcdmd 7105 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑞) ∈ (Base‘𝑅))
3735, 36ovresd 7600 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) = (((ℚHom‘𝑅)‘0)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)))
38 inss1 4237 . . . . . . . . . . . . . . . . 17 (NrmRing ∩ DivRing) ⊆ NrmRing
3938sseli 3979 . . . . . . . . . . . . . . . 16 (𝑅 ∈ (NrmRing ∩ DivRing) → 𝑅 ∈ NrmRing)
40393ad2ant1 1134 . . . . . . . . . . . . . . 15 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑅 ∈ NrmRing)
4140ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ NrmRing)
42 nrgngp 24683 . . . . . . . . . . . . . 14 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
4341, 42syl 17 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ NrmGrp)
44 eqid 2737 . . . . . . . . . . . . . 14 (-g𝑅) = (-g𝑅)
45 eqid 2737 . . . . . . . . . . . . . 14 (dist‘𝑅) = (dist‘𝑅)
4629, 5, 44, 45ngpdsr 24618 . . . . . . . . . . . . 13 ((𝑅 ∈ NrmGrp ∧ ((ℚHom‘𝑅)‘0) ∈ (Base‘𝑅) ∧ ((ℚHom‘𝑅)‘𝑞) ∈ (Base‘𝑅)) → (((ℚHom‘𝑅)‘0)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0))))
4743, 35, 36, 46syl3anc 1373 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘0)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0))))
483ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ DivRing)
494ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (chr‘𝑅) = 0)
505, 6, 7qqh0 33985 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g𝑅))
5148, 49, 50syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘0) = (0g𝑅))
5251oveq2d 7447 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0)) = (((ℚHom‘𝑅)‘𝑞)(-g𝑅)(0g𝑅)))
53 ngpgrp 24612 . . . . . . . . . . . . . . . 16 (𝑅 ∈ NrmGrp → 𝑅 ∈ Grp)
5443, 53syl 17 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ Grp)
55 eqid 2737 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
565, 55, 44grpsubid1 19043 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Grp ∧ ((ℚHom‘𝑅)‘𝑞) ∈ (Base‘𝑅)) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)(0g𝑅)) = ((ℚHom‘𝑅)‘𝑞))
5754, 36, 56syl2anc 584 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)(0g𝑅)) = ((ℚHom‘𝑅)‘𝑞))
5852, 57eqtrd 2777 . . . . . . . . . . . . 13 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0)) = ((ℚHom‘𝑅)‘𝑞))
5958fveq2d 6910 . . . . . . . . . . . 12 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘0))) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)))
6037, 47, 593eqtrd 2781 . . . . . . . . . . 11 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘𝑞)))
6133, 60eqtr4d 2780 . . . . . . . . . 10 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → (0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)))
6261breq1d 5153 . . . . . . . . 9 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 ↔ (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6362biimpd 229 . . . . . . . 8 ((((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) ∧ 𝑞 ∈ ℚ) → ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6463ralrimiva 3146 . . . . . . 7 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) → ∀𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
65 breq2 5147 . . . . . . . 8 (𝑑 = 𝑒 → ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 ↔ (0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒))
6665rspceaimv 3628 . . . . . . 7 ((𝑒 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6710, 64, 66syl2anc 584 . . . . . 6 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6867ralrimiva 3146 . . . . 5 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
69 qqhcn.q . . . . . . . 8 𝑄 = (ℂflds ℚ)
70 cnfldxms 24797 . . . . . . . . 9 fld ∈ ∞MetSp
71 qex 13003 . . . . . . . . 9 ℚ ∈ V
72 ressxms 24538 . . . . . . . . 9 ((ℂfld ∈ ∞MetSp ∧ ℚ ∈ V) → (ℂflds ℚ) ∈ ∞MetSp)
7370, 71, 72mp2an 692 . . . . . . . 8 (ℂflds ℚ) ∈ ∞MetSp
7469, 73eqeltri 2837 . . . . . . 7 𝑄 ∈ ∞MetSp
7569qrngbas 27663 . . . . . . . 8 ℚ = (Base‘𝑄)
76 cnfldds 21376 . . . . . . . . . 10 (abs ∘ − ) = (dist‘ℂfld)
7769, 76ressds 17454 . . . . . . . . 9 (ℚ ∈ V → (abs ∘ − ) = (dist‘𝑄))
7871, 77ax-mp 5 . . . . . . . 8 (abs ∘ − ) = (dist‘𝑄)
7975, 78xmsxmet2 24469 . . . . . . 7 (𝑄 ∈ ∞MetSp → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
8074, 79mp1i 13 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
81 ngpxms 24614 . . . . . . . . 9 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
8239, 42, 813syl 18 . . . . . . . 8 (𝑅 ∈ (NrmRing ∩ DivRing) → 𝑅 ∈ ∞MetSp)
83823ad2ant1 1134 . . . . . . 7 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑅 ∈ ∞MetSp)
845, 45xmsxmet2 24469 . . . . . . 7 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
8583, 84syl 17 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
8626a1i 11 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 0 ∈ ℚ)
87 qqhcn.j . . . . . . . . 9 𝐽 = (TopOpen‘𝑄)
8878reseq1i 5993 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℚ × ℚ)) = ((dist‘𝑄) ↾ (ℚ × ℚ))
8987, 75, 88xmstopn 24461 . . . . . . . 8 (𝑄 ∈ ∞MetSp → 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (ℚ × ℚ))))
9074, 89ax-mp 5 . . . . . . 7 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (ℚ × ℚ)))
91 eqid 2737 . . . . . . 7 (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))
9290, 91metcnp 24554 . . . . . 6 ((((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ) ∧ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)) ∧ 0 ∈ ℚ) → ((ℚHom‘𝑅) ∈ ((𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))‘0) ↔ ((ℚHom‘𝑅):ℚ⟶(Base‘𝑅) ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))))
9380, 85, 86, 92syl3anc 1373 . . . . 5 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅) ∈ ((𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))‘0) ↔ ((ℚHom‘𝑅):ℚ⟶(Base‘𝑅) ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑞 ∈ ℚ ((0((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘0)((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))((ℚHom‘𝑅)‘𝑞)) < 𝑒))))
949, 68, 93mpbir2and 713 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ ((𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))‘0))
95 qqhcn.k . . . . . . . 8 𝐾 = (TopOpen‘𝑅)
96 eqid 2737 . . . . . . . 8 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
9795, 5, 96xmstopn 24461 . . . . . . 7 (𝑅 ∈ ∞MetSp → 𝐾 = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
9883, 97syl 17 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝐾 = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
9998oveq2d 7447 . . . . 5 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (𝐽 CnP 𝐾) = (𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))
10099fveq1d 6908 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((𝐽 CnP 𝐾)‘0) = ((𝐽 CnP (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))‘0))
10194, 100eleqtrrd 2844 . . 3 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ ((𝐽 CnP 𝐾)‘0))
102 cnfldtgp 24893 . . . . . 6 fld ∈ TopGrp
103 qsubdrg 21437 . . . . . . . 8 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
104103simpli 483 . . . . . . 7 ℚ ∈ (SubRing‘ℂfld)
105 subrgsubg 20577 . . . . . . 7 (ℚ ∈ (SubRing‘ℂfld) → ℚ ∈ (SubGrp‘ℂfld))
106104, 105ax-mp 5 . . . . . 6 ℚ ∈ (SubGrp‘ℂfld)
10769subgtgp 24113 . . . . . 6 ((ℂfld ∈ TopGrp ∧ ℚ ∈ (SubGrp‘ℂfld)) → 𝑄 ∈ TopGrp)
108102, 106, 107mp2an 692 . . . . 5 𝑄 ∈ TopGrp
109 tgptmd 24087 . . . . 5 (𝑄 ∈ TopGrp → 𝑄 ∈ TopMnd)
110108, 109mp1i 13 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑄 ∈ TopMnd)
111 nrgtrg 24711 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing)
112 trgtmd2 24177 . . . . 5 (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd)
11340, 111, 1123syl 18 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → 𝑅 ∈ TopMnd)
1145, 6, 7, 69qqhghm 33989 . . . . 5 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
1153, 4, 114syl2anc 584 . . . 4 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
11675, 87, 95ghmcnp 24123 . . . 4 ((𝑄 ∈ TopMnd ∧ 𝑅 ∈ TopMnd ∧ (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅)) → ((ℚHom‘𝑅) ∈ ((𝐽 CnP 𝐾)‘0) ↔ (0 ∈ ℚ ∧ (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾))))
117110, 113, 115, 116syl3anc 1373 . . 3 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅) ∈ ((𝐽 CnP 𝐾)‘0) ↔ (0 ∈ ℚ ∧ (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾))))
118101, 117mpbid 232 . 2 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (0 ∈ ℚ ∧ (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾)))
119118simprd 495 1 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  cin 3950   class class class wbr 5143   × cxp 5683  cres 5687  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155   < clt 11295  cmin 11492  -cneg 11493  cz 12613  cq 12990  +crp 13034  abscabs 15273  Basecbs 17247  s cress 17274  distcds 17306  TopOpenctopn 17466  0gc0g 17484  Grpcgrp 18951  -gcsg 18953  SubGrpcsubg 19138   GrpHom cghm 19230  /rcdvr 20400  SubRingcsubrg 20569  DivRingcdr 20729  ∞Metcxmet 21349  MetOpencmopn 21354  fldccnfld 21364  ℤRHomczrh 21510  ℤModczlm 21511  chrcchr 21512   Cn ccn 23232   CnP ccnp 23233  TopMndctmd 24078  TopGrpctgp 24079  TopRingctrg 24164  ∞MetSpcxms 24327  normcnm 24589  NrmGrpcngp 24590  NrmRingcnrg 24592  NrmModcnlm 24593  ℚHomcqqh 33971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-numer 16772  df-denom 16773  df-gz 16968  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-plusf 18652  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-od 19546  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-drng 20731  df-abv 20810  df-lmod 20860  df-scaf 20861  df-sra 21172  df-rgmod 21173  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-zlm 21515  df-chr 21516  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cn 23235  df-cnp 23236  df-tx 23570  df-hmeo 23763  df-tmd 24080  df-tgp 24081  df-trg 24168  df-xms 24330  df-ms 24331  df-tms 24332  df-nm 24595  df-ngp 24596  df-nrg 24598  df-nlm 24599  df-qqh 33972
This theorem is referenced by:  rrhqima  34015
  Copyright terms: Public domain W3C validator