![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlsegvdeglem5 | Structured version Visualization version GIF version |
Description: Lemma for trlsegvdeg 29480. (Contributed by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | β’ π = (VtxβπΊ) |
trlsegvdeg.i | β’ πΌ = (iEdgβπΊ) |
trlsegvdeg.f | β’ (π β Fun πΌ) |
trlsegvdeg.n | β’ (π β π β (0..^(β―βπΉ))) |
trlsegvdeg.u | β’ (π β π β π) |
trlsegvdeg.w | β’ (π β πΉ(TrailsβπΊ)π) |
trlsegvdeg.vx | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.vy | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.vz | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.ix | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) |
trlsegvdeg.iy | β’ (π β (iEdgβπ) = {β¨(πΉβπ), (πΌβ(πΉβπ))β©}) |
trlsegvdeg.iz | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0...π)))) |
Ref | Expression |
---|---|
trlsegvdeglem5 | β’ (π β dom (iEdgβπ) = {(πΉβπ)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.iy | . . 3 β’ (π β (iEdgβπ) = {β¨(πΉβπ), (πΌβ(πΉβπ))β©}) | |
2 | 1 | dmeqd 5906 | . 2 β’ (π β dom (iEdgβπ) = dom {β¨(πΉβπ), (πΌβ(πΉβπ))β©}) |
3 | fvex 6905 | . . 3 β’ (πΌβ(πΉβπ)) β V | |
4 | dmsnopg 6213 | . . 3 β’ ((πΌβ(πΉβπ)) β V β dom {β¨(πΉβπ), (πΌβ(πΉβπ))β©} = {(πΉβπ)}) | |
5 | 3, 4 | mp1i 13 | . 2 β’ (π β dom {β¨(πΉβπ), (πΌβ(πΉβπ))β©} = {(πΉβπ)}) |
6 | 2, 5 | eqtrd 2773 | 1 β’ (π β dom (iEdgβπ) = {(πΉβπ)}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 Vcvv 3475 {csn 4629 β¨cop 4635 class class class wbr 5149 dom cdm 5677 βΎ cres 5679 β cima 5680 Fun wfun 6538 βcfv 6544 (class class class)co 7409 0cc0 11110 ...cfz 13484 ..^cfzo 13627 β―chash 14290 Vtxcvtx 28256 iEdgciedg 28257 Trailsctrls 28947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-dm 5687 df-iota 6496 df-fv 6552 |
This theorem is referenced by: trlsegvdeglem7 29479 trlsegvdeg 29480 |
Copyright terms: Public domain | W3C validator |