| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trlsegvdeglem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for trlsegvdeg 30207. (Contributed by AV, 21-Feb-2021.) |
| Ref | Expression |
|---|---|
| trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
| trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
| trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
| trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
| trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
| trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
| Ref | Expression |
|---|---|
| trlsegvdeglem5 | ⊢ (𝜑 → dom (iEdg‘𝑌) = {(𝐹‘𝑁)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.iy | . . 3 ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
| 2 | 1 | dmeqd 5844 | . 2 ⊢ (𝜑 → dom (iEdg‘𝑌) = dom {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
| 3 | fvex 6835 | . . 3 ⊢ (𝐼‘(𝐹‘𝑁)) ∈ V | |
| 4 | dmsnopg 6160 | . . 3 ⊢ ((𝐼‘(𝐹‘𝑁)) ∈ V → dom {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉} = {(𝐹‘𝑁)}) | |
| 5 | 3, 4 | mp1i 13 | . 2 ⊢ (𝜑 → dom {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉} = {(𝐹‘𝑁)}) |
| 6 | 2, 5 | eqtrd 2766 | 1 ⊢ (𝜑 → dom (iEdg‘𝑌) = {(𝐹‘𝑁)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4573 〈cop 4579 class class class wbr 5089 dom cdm 5614 ↾ cres 5616 “ cima 5617 Fun wfun 6475 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ...cfz 13407 ..^cfzo 13554 ♯chash 14237 Vtxcvtx 28974 iEdgciedg 28975 Trailsctrls 29667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-dm 5624 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: trlsegvdeglem7 30206 trlsegvdeg 30207 |
| Copyright terms: Public domain | W3C validator |